File size: 7,454 Bytes
a61658a 3159233 a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a ccbe0cb a61658a 1a83371 70c68fc 1a83371 70c68fc 1a83371 70c68fc 1a83371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
dataset_info:
features:
- name: ID
dtype: string
- name: regional
dtype: string
- name: English
dtype: string
- name: Conserved_translation
dtype: string
- name: Substituted_translation
dtype: string
- name: Category
dtype: string
- name: Preferred_translation
dtype: string
- name: image
dtype: image
splits:
- name: es_mex
num_bytes: 158368543.0
num_examples: 323
- name: bn_india
num_bytes: 94017886.0
num_examples: 286
- name: om_eth
num_bytes: 28490930.0
num_examples: 214
- name: ur_india
num_bytes: 102386298.0
num_examples: 220
- name: ig_nga
num_bytes: 14372042.0
num_examples: 200
- name: ur_pak
num_bytes: 147129846.0
num_examples: 216
- name: zh_ch
num_bytes: 91877910.0
num_examples: 308
- name: es_ecu
num_bytes: 141969979.0
num_examples: 362
- name: sw_ken
num_bytes: 31567516.0
num_examples: 271
- name: kor_sk
num_bytes: 143897056.0
num_examples: 290
- name: ru_rus
num_bytes: 56598710.0
num_examples: 200
- name: ta_india
num_bytes: 142254878.0
num_examples: 213
- name: amh_eth
num_bytes: 122937506.0
num_examples: 234
- name: jp_jap
num_bytes: 63884062.0
num_examples: 203
- name: fil_phl
num_bytes: 42171387.0
num_examples: 203
- name: ms_mys
num_bytes: 84408174.0
num_examples: 315
- name: bg_bg
num_bytes: 179103702.0
num_examples: 369
- name: es_chl
num_bytes: 98202963.0
num_examples: 234
- name: pt_brz
num_bytes: 214095076.0
num_examples: 284
- name: ar_egy
num_bytes: 106134417.0
num_examples: 203
- name: ind_ind
num_bytes: 116476184.0
num_examples: 202
- name: mr_india
num_bytes: 145040535.0
num_examples: 202
- name: es_arg
num_bytes: 142144959.0
num_examples: 265
download_size: 1952703427
dataset_size: 2467530559.0
configs:
- config_name: default
data_files:
- split: es_mex
path: data/es_mex-*
- split: bn_india
path: data/bn_india-*
- split: om_eth
path: data/om_eth-*
- split: ur_india
path: data/ur_india-*
- split: ig_nga
path: data/ig_nga-*
- split: ur_pak
path: data/ur_pak-*
- split: zh_ch
path: data/zh_ch-*
- split: es_ecu
path: data/es_ecu-*
- split: sw_ken
path: data/sw_ken-*
- split: kor_sk
path: data/kor_sk-*
- split: ru_rus
path: data/ru_rus-*
- split: ta_india
path: data/ta_india-*
- split: amh_eth
path: data/amh_eth-*
- split: jp_jap
path: data/jp_jap-*
- split: fil_phl
path: data/fil_phl-*
- split: ms_mys
path: data/ms_mys-*
- split: bg_bg
path: data/bg_bg-*
- split: es_chl
path: data/es_chl-*
- split: pt_brz
path: data/pt_brz-*
- split: ar_egy
path: data/ar_egy-*
- split: ind_ind
path: data/ind_ind-*
- split: mr_india
path: data/mr_india-*
- split: es_arg
path: data/es_arg-*
---
# CaMMT Dataset Card
<!-- Provide a quick summary of the dataset. -->
CaMMT is a human-curated benchmark dataset for evaluating multimodal machine translation systems on culturally-relevant content. The dataset contains over 5,800 image-caption triples across 19 languages and 23 regions, with parallel captions in English and regional languages, specifically designed to assess how visual context impacts translation of culturally-specific items.
```python
from datasets import load_dataset
# Load the full dataset
dataset = load_dataset("villacu/cammt")
# Load a specific split if available
dataset = load_dataset("villacu/cammt", split="ar_egy")
```
## Dataset Details
### Dataset Description
CAMMT addresses the challenge of translating cultural content by investigating whether images can serve as cultural context in multimodal translation. The dataset is built upon the CVQA (Culturally-diverse multilingual Visual Question Answering) dataset, transforming question-answer pairs into declarative caption statements. Each entry includes parallel captions in English and regional languages, with special attention to Culturally-Specific Items (CSIs) and their translation strategies.
The dataset includes both conserved translations (preserving original cultural terms) and substituted translations (using familiar equivalents) for items containing CSIs, along with native speaker preferences for translation strategies.
- **Curated by:** MBZUAI and collaborating institutions across the globe.
- **Language(s) (NLP):** 19 languages across 23 regions (Amharic, Arabic, Bengali, Bulgarian, Chinese, Filipino, Igbo, Indonesian, Japanese, Korean, Malay, Marathi, Oromo, Portuguese, Russian, Spanish (4 regional variants), Swahili, Tamil, Urdu (2 regional variants))
- **License:** Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Paper:** [CAMMT: Benchmarking Culturally Aware Multimodal Machine Translation](https://arxiv.org/abs/2505.24456)
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
The dataset contains 5,817 main entries plus an additional 1,550 entries with conserved and substituted CSI translations. Each entry includes:
- **ID**: Unique identifier from the original CVQA dataset
- **regional**: Caption in the regional language
- **English**: Parallel caption in English
- **Conserved_translation**: English translation preserving the original CSI (if applicable)
- **Substituted_translation**: English translation using a familiar equivalent for the CSI (if applicable)
- **Category**: Classification of cultural relevance:
- `"not culturally-relevant sentence"`
- `"non-CSI"` (culturally relevant but no specific CSI)
- `"CSI- has possible translation"` (CSI with cultural equivalent)
- `"CSI-forced translation"` (CSI without direct equivalent)
- **Preferred_translation**: Native speaker preference between conserved or substituted translation (if applicable)
The dataset spans 23 regions with varying numbers of samples per region (ranging from 200 to 369 samples).
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@misc{villacueva2025cammtbenchmarkingculturallyaware,
title={CaMMT: Benchmarking Culturally Aware Multimodal Machine Translation},
author={Emilio Villa-Cueva and Sholpan Bolatzhanova and Diana Turmakhan and Kareem Elzeky and Henok Biadglign Ademtew and Alham Fikri Aji and Israel Abebe Azime and Jinheon Baek and Frederico Belcavello and Fermin Cristobal and Jan Christian Blaise Cruz and Mary Dabre and Raj Dabre and Toqeer Ehsan and Naome A Etori and Fauzan Farooqui and Jiahui Geng and Guido Ivetta and Thanmay Jayakumar and Soyeong Jeong and Zheng Wei Lim and Aishik Mandal and Sofia Martinelli and Mihail Minkov Mihaylov and Daniil Orel and Aniket Pramanick and Sukannya Purkayastha and Israfel Salazar and Haiyue Song and Tiago Timponi Torrent and Debela Desalegn Yadeta and Injy Hamed and Atnafu Lambebo Tonja and Thamar Solorio},
year={2025},
eprint={2505.24456},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.24456},
} |