Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 9 new columns ({'Unnamed: 0', 'P_F', 'VPD_F', 'TA_F', 'NEE_F', 'FCH4_F_ANNOPTLM', 'TIMESTAMP', 'FCH4_F', 'Site'}) and 10 missing columns ({'LOCATION_ELEV', 'LOCATION_LAT', 'FLUXNET-CH4', 'MAT', 'LOCATION_LONG', 'IGBP', 'MAP', 'SITE_ID', 'SITE_NAME', 'FLUXNET2015'}).

This happened while the csv dataset builder was generating data using

hf://datasets/ymsun99/X-MethaneWet/FLUXNET-CH4/FLUXNET_T1_DD.csv (at revision c445a98ffb0a99407cf7db7ca234901ae2e8cc98)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: string
              TIMESTAMP: string
              FCH4_F_ANNOPTLM: double
              NEE_F: double
              TA_F: double
              VPD_F: double
              P_F: double
              FCH4_F: double
              Site: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1291
              to
              {'SITE_ID': Value('string'), 'SITE_NAME': Value('string'), 'FLUXNET2015': Value('string'), 'FLUXNET-CH4': Value('string'), 'LOCATION_LAT': Value('float64'), 'LOCATION_LONG': Value('float64'), 'LOCATION_ELEV': Value('float64'), 'IGBP': Value('string'), 'MAT': Value('float64'), 'MAP': Value('float64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1451, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 994, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 9 new columns ({'Unnamed: 0', 'P_F', 'VPD_F', 'TA_F', 'NEE_F', 'FCH4_F_ANNOPTLM', 'TIMESTAMP', 'FCH4_F', 'Site'}) and 10 missing columns ({'LOCATION_ELEV', 'LOCATION_LAT', 'FLUXNET-CH4', 'MAT', 'LOCATION_LONG', 'IGBP', 'MAP', 'SITE_ID', 'SITE_NAME', 'FLUXNET2015'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/ymsun99/X-MethaneWet/FLUXNET-CH4/FLUXNET_T1_DD.csv (at revision c445a98ffb0a99407cf7db7ca234901ae2e8cc98)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

SITE_ID
string
SITE_NAME
string
FLUXNET2015
string
FLUXNET-CH4
string
LOCATION_LAT
float64
LOCATION_LONG
float64
LOCATION_ELEV
float64
IGBP
string
MAT
float64
MAP
float64
AT-Neu
Neustift
CC-BY-4.0
CC-BY-4.0
47.1167
11.3175
970
GRA
6.5
852
BR-Npw
Northern Pantanal Wetland
null
CC-BY-4.0
-16.498
-56.412
120
WSA
24.9
1,486
BW-Gum
Guma
null
CC-BY-4.0
-18.9647
22.3711
950
WET
21
460
BW-Nxr
Nxaraga
null
CC-BY-4.0
-19.5481
23.1792
950
GRA
21
460
CA-SCB
Scotty Creek Bog
null
CC-BY-4.0
61.3089
-121.2984
280
WET
-2.8
388
CA-SCC
Scotty Creek Landscape
null
CC-BY-4.0
61.3079
-121.2992
285
ENF
-2.8
387.6
CH-Cha
Chamau
CC-BY-4.0
CC-BY-4.0
47.2102
8.4104
393
GRA
9.5
1,136
CH-Dav
Davos
CC-BY-4.0
CC-BY-4.0
46.8153
9.8559
1,639
ENF
2.8
1,062
CH-Oe2
Oensingen crop
CC-BY-4.0
CC-BY-4.0
47.2864
7.7337
452
CRO
9.8
1,155
CN-Hgu
Hongyuan
null
CC-BY-4.0
32.8453
102.59
3,500
GRA
1.5
747
DE-Dgw
Dagowsee
null
CC-BY-4.0
53.1514
13.0543
60
WAT
9.02
602.9
DE-Hte
Huetelmoor
null
CC-BY-4.0
54.2103
12.1761
0.2
WET
9.2
645
DE-SfN
Schechenfilz Nord
CC-BY-4.0
CC-BY-4.0
47.8064
11.3275
590
WET
8.6
1,127
DE-Zrk
Zarnekow
CC-BY-4.0
CC-BY-4.0
53.8759
12.889
0
WET
8.7
584
FI-Hyy
Hyytiala
CC-BY-4.0
CC-BY-4.0
61.8474
24.2948
181
ENF
3.8
709
FI-Lom
Lompolojankka
CC-BY-4.0
CC-BY-4.0
67.9972
24.2092
274
WET
-1.4
484
FI-Si2
Siikaneva-2 Bog
null
CC-BY-4.0
61.8372
24.1967
160
WET
3.5
701
FI-Sii
Siikaneva
null
CC-BY-4.0
61.8327
24.1928
160
WET
3.5
701
FR-LGt
La Guette
null
CC-BY-4.0
47.3229
2.2841
null
WET
null
null
HK-MPM
Mai Po Mangrove
null
CC-BY-4.0
22.4982
114.0292
-1
EBF
23.3
1,400
ID-Pag
Palangkaraya undrained forest
null
CC-BY-4.0
-2.32
113.9
30
EBF
26.2
2,546
IT-BCi
Borgo Cioffi
CC-BY-4.0
CC-BY-4.0
40.5237
14.9574
20
CRO
18
600
IT-Cas
Castellaro
null
CC-BY-4.0
45.07
8.7175
89
CRO
11.9
null
JP-BBY
Bibai bog
null
CC-BY-4.0
43.323
141.8107
null
WET
null
null
JP-Mse
Mase rice paddy field
null
CC-BY-4.0
36.0539
140.0269
null
CRO
null
null
JP-SwL
Suwa Lake
null
CC-BY-4.0
36.0466
138.1084
null
WAT
null
null
KR-CRK
Cheorwon Rice paddy
null
CC-BY-4.0
38.2013
127.2506
182
CRO
11.2
1,180.9
MY-MLM
Maludam National Park
null
CC-BY-4.0
1.4536
111.1495
null
EBF
null
null
NL-Hor
Horstermeer
CC-BY-4.0
CC-BY-4.0
52.2403
5.0713
2.2
GRA
10
800
NZ-Kop
Kopuatai
null
CC-BY-4.0
-37.3879
175.5539
null
EBF
null
null
PH-RiF
Philippines Rice Institute flooded
null
CC-BY-4.0
14.1412
121.2653
27
CRO
27.5
2,112
RU-Ch2
Chersky reference
null
CC-BY-4.0
68.6169
161.3509
4
WET
-12.5
200
RU-Che
Cherski
CC-BY-4.0
CC-BY-4.0
68.613
161.3414
6
WET
-11
197
RU-Cok
Chokurdakh
CC-BY-4.0
CC-BY-4.0
70.8291
147.4943
48
OSH
-14.3
232
RU-Fy2
Fyodorovskoye dry spruce
null
CC-BY-4.0
56.4476
32.9019
null
ENF
4.39
668.53
SE-Deg
Degero
null
CC-BY-4.0
64.182
19.5565
270
GRA
1.2
523
UK-LBT
London_BT
null
CC-BY-4.0
51.5215
-0.1389
21
URB
11.3
592
US-A03
ARM-AMF3-Oliktok
null
CC-BY-4.0
70.4953
-149.8823
5
BSV
-11.2
115.1
US-A10
ARM-NSA-Barrow
null
CC-BY-4.0
71.3242
-156.6149
4
BSV
-11.2
115.1
US-Atq
Atqasuk
CC-BY-4.0
CC-BY-4.0
70.4696
-157.4089
15
WET
-9.7
93
US-BZB
Bonanza Creek Thermokarst Bog
null
CC-BY-4.0
64.6955
-148.3208
100
WET
-2.4
274
US-BZF
Bonanza Creek Rich Fen
null
CC-BY-4.0
64.7013
-148.3121
95
WET
-2.4
274
US-BZS
Bonanza Creek Black Spruce
null
CC-BY-4.0
64.6963
-148.3235
100
ENF
-2.4
274
US-Beo
Barrow Environmental Observatory (BEO) tower
null
CC-BY-4.0
71.281
-156.6123
null
WET
-11.3
72
US-Bes
Barrow-Bes (Biocomplexity Experiment South tower)
null
CC-BY-4.0
71.2809
-156.5965
4.6
WET
-12
173
US-Bi1
Bouldin Island Alfalfa
null
CC-BY-4.0
38.0992
-121.4993
-2.7
CRO
16
338
US-Bi2
Bouldin Island corn
null
CC-BY-4.0
38.1091
-121.5351
-5
CRO
16
338
US-CRT
Curtice Walter-Berger cropland
CC-BY-4.0
CC-BY-4.0
41.6285
-83.3471
180
CRO
10.1
849
US-DPW
Disney Wilderness Preserve Wetland
null
CC-BY-4.0
28.0521
-81.4361
23
WET
22.6
1,142
US-EDN
Eden Landing Ecological Reserve
null
CC-BY-4.0
37.6156
-122.114
null
WET
null
null
US-EML
Eight Mile Lake Permafrost thaw gradient, Healy Alaska.
null
CC-BY-4.0
63.8784
-149.2536
662
OSH
-1
378
US-HRA
Humnoke Farm Rice Field β€šΓ„Γ¬ Field A
null
CC-BY-4.0
34.5852
-91.7517
null
CRO
16.7
1,250
US-HRC
Humnoke Farm Rice Field β€šΓ„Γ¬ Field C
null
CC-BY-4.0
34.5888
-91.7517
null
CRO
16.7
1,250
US-Ho1
Howland Forest (main tower)
null
CC-BY-4.0
45.2041
-68.7402
60
ENF
5.27
1,070
US-ICs
Imnavait Creek Watershed Wet Sedge Tundra
null
CC-BY-4.0
68.6058
-149.311
920
WET
-7.4
318
US-Ivo
Ivotuk
CC-BY-4.0
CC-BY-4.0
68.4865
-155.7503
568
WET
-8.28
304
US-LA1
Pointe-aux-Chenes Brackish Marsh
null
CC-BY-4.0
29.5013
-90.4449
0
WET
20.7
1,625
US-LA2
Salvador WMA Freshwater Marsh
null
CC-BY-4.0
29.8587
-90.2869
0
WET
20.2
1,655
US-Los
Lost Creek
CC-BY-4.0
CC-BY-4.0
46.0827
-89.9792
480
WET
4.08
828
US-MAC
MacArthur Agro-Ecology
null
CC-BY-4.0
27.1632
-81.1873
null
WET
null
null
US-MRM
Marsh Resource Meadowlands Mitigation Bank
null
CC-BY-4.0
40.8164
-74.0435
1
WET
13.5
1,120
US-Myb
Mayberry Wetland
CC-BY-4.0
CC-BY-4.0
38.0499
-121.765
-4
WET
15.9
338
US-NC4
NC_AlligatorRiver
null
CC-BY-4.0
35.7879
-75.9038
1
WET
16.6
1,311
US-NGB
NGEE Arctic Barrow
null
CC-BY-4.0
71.28
-156.6092
5.273
SNO
-11.27
171
US-NGC
NGEE Arctic Council
null
CC-BY-4.0
64.8618
-163.7002
35
GRA
null
null
US-ORv
Olentangy River Wetland Research Park
CC-BY-4.0
CC-BY-4.0
40.0201
-83.0183
221
WET
11.63
1,499.1
US-OWC
Old Woman Creek
null
CC-BY-4.0
41.3795
-82.5125
174
WET
10.7
930
US-PFa
Park Falls/WLEF
CC-BY-4.0
CC-BY-4.0
45.9459
-90.2723
470
MF
4.33
823
US-Snd
Sherman Island
null
CC-BY-4.0
38.0366
-121.754
-5
GRA
15.6
358
US-Sne
Sherman Island Restored Wetland
null
CC-BY-4.0
38.0369
-121.7547
-5
GRA
16.09
311
US-Srr
Suisun marsh - Rush Ranch
null
CC-BY-4.0
38.2006
-122.0264
8
WET
15.1
326
US-StJ
St Jones Reserve
null
CC-BY-4.0
39.0882
-75.4372
6.7
WET
13.5
1,121
US-Tw1
Twitchell Wetland West Pond
CC-BY-4.0
CC-BY-4.0
38.1074
-121.6469
-5
WET
15.5
421
US-Tw3
Twitchell Alfalfa
CC-BY-4.0
CC-BY-4.0
38.1152
-121.6469
-4
CRO
15.6
421
US-Tw4
Twitchell East End Wetland
CC-BY-4.0
CC-BY-4.0
38.1027
-121.6413
-5
WET
15.6
421
US-Tw5
East Pond Wetland
null
CC-BY-4.0
38.1072
-121.6426
-5
WET
15.5
421
US-Twt
Twitchell Island
CC-BY-4.0
CC-BY-4.0
38.1087
-121.6531
-7
CRO
15.6
421
US-Uaf
University of Alaska, Fairbanks
null
CC-BY-4.0
64.8663
-147.8555
155
ENF
-2.9
263
US-WPT
Winous Point North Marsh
CC-BY-4.0
CC-BY-4.0
41.4646
-82.9962
175
WET
10.1
849
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.

🌍 X-MethaneWet: A Cross-Scale Global Wetland Methane Benchmark Dataset

X-MethaneWet is a first-of-its-kind cross-scale global wetland methane benchmark dataset designed to support research on methane (CHβ‚„) emissions across temporal and spatial scales. It integrates physics-based model simulations and real-world observations to enable data-driven climate science and AI-powered modeling of wetland CHβ‚„ fluxes.

This dataset integrates two complementary sources:

  • FLUXNET-CHβ‚„: Real-world, site-level methane flux observations across diverse wetland ecosystems.
  • TEM-MDM: Physics-based, gridded global simulations of CHβ‚„ fluxes and related variables generated by the Terrestrial Ecosystem Model with Methane Dynamics Module.

By synthesizing observational and model-generated data, X-MethaneWet provides a unique platform to explore the spatial and temporal variability of methane emissions across different scales and environments.

πŸ“ Dataset Structure

The X-MethaneWet dataset integrates both simulated and observed CHβ‚„ data across different spatial and temporal scales. The folder structure is organized as follows:

FLUXNET-CH4/
β”œβ”€β”€ FLUXNET_CH4_2024.csv
└── FLUXNET_T1_DD.csv
TEM-MDM/
β”œβ”€β”€ phh2o.nc
β”œβ”€β”€ topsoil_bulk_density.nc
β”œβ”€β”€ clelev.nc
β”œβ”€β”€ clfaotxt.nc
β”œβ”€β”€ cltveg.nc
β”œβ”€β”€ vegetation_type_11.nc
β”œβ”€β”€ wetlandtype.nc
β”œβ”€β”€ climatetype.nc
β”œβ”€β”€ ch4-1979-2018.txt
β”œβ”€β”€ kco21979-2018.txt
β”œβ”€β”€ monthly_NPP_{1979–2018}.nc
β”œβ”€β”€ daily_ecmwf_PREC_{1979–2018}.nc
β”œβ”€β”€ daily_ecmwf_SOLR_{1979–2018}.nc
β”œβ”€β”€ daily_ecmwf_TAIR_{1979–2018}.nc
β”œβ”€β”€ daily_ecmwf_VAPR_{1979–2018}.nc
└── CH4_emission_intensity_{1979–2018}.nc

Simulated Data: TEM-MDM/

The TEM-MDM (Terrestrial Ecosystem Model with Methane Dynamics Module) simulates methane-related processes including production, oxidation, and transport, enhanced by modeling permafrost and vegetation carbon dynamics. We simulate global daily CHβ‚„ fluxes from 1979 to 2018 on a 0.5Β° spatial resolution grid.

Input drivers include:

  • Static Features: Elevation (clelev) [1], vegetation type (cltveg [2], vegetation_type_11 [3]), wetland type (wetlandtype) [4], soil pH (phh2o) [5], bulk density (topsoil_bulk_density) [6], soil texture (clfaotxt) [7]
  • Yearly Variables: Global annual COβ‚‚ concentrations (kco2) and CHβ‚„ (ch4) concentrations
  • Monthly Variable: Net Primary Productivity (NPP) [8]
  • Daily Variables: Climate inputs from ERA-Interim, including precipitation (PREC) [9], air temperature (TAIR) [9], solar radiation (SOLR) [9], and vapor pressure (VAPR) [9]

Each grid location contains 40 years of daily data, cut into 365-day yearly sequences. The processed input has shape:

N_input = 62,470 (locations) Γ— 40 (years) Γ— 365 (days) Γ— 15 (features)

The output is a single target: daily CHβ‚„ flux intensity [8], resulting in:

N_output = 62,470 Γ— 40 Γ— 365

Observed Data: FLUXNET-CH4/

The FLUXNET-CHβ‚„ dataset provides site-level CHβ‚„ flux measurements collected using eddy covariance towers. We selected 30 wetland sites spanning diverse types (bog, fen, marsh, swamp, salt marsh, tundra) and climate zones (Arctic-boreal, temperate, subtropical). [10]

Data characteristics:

  • Time span: ~2006 to 2018 (varies by site)
  • Temporal resolution: Daily CHβ‚„ fluxes
  • Features: Air temperature, precipitation, vapor pressure, elevation, IGBP land cover classification

We retain only wetland sites (based on IGBP classification) and use the WAD2M wetland map to annotate site types. To create consistent inputs, we:

  • Fill missing features using the nearest TEM-MDM grid cell
  • Align feature space with the simulated data (15 dimensions)

FLUXNET CHβ‚„ emissions typically range from -100 to 900 mg C m⁻² d⁻¹.

πŸ“Š Model Benchmarking

We provide baseline performance evaluations using various sequential deep learning models (e.g., LSTM, Transformer) and explore transfer learning strategies to enhance generalization from simulated (TEM-MDM) to real (FLUXNET-CHβ‚„) data.

Detailed descriptions of the dataset and benchmarking experiments are available in our paper, and the code implementation for all baseline models can be found in our GitHub repository.

Citation

If you use this dataset, please cite the following paper:

@article{sun2025x,
  title={X-MethaneWet: A Cross-scale Global Wetland Methane Emission Benchmark Dataset for Advancing Science Discovery with AI},
  author={Sun, Yiming and Chen, Shuo and Chen, Shengyu and Qiu, Chonghao and Liu, Licheng and Oh, Youmi and Malone, Sparkle L and McNicol, Gavin and Zhuang, Qianlai and Smith, Chris and Xie, Yiqun and Jia, Xiaowei},
  journal={arXiv preprint arXiv:2505.18355},
  year={2025}
}

References

[1] Thierry Toutin. 2002. Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE Transactions on geoscience and remote sensing 40, 10 (2002), 2241–2247.

[2] Jerry M Melillo, A David McGuire, David W Kicklighter, Berrien Moore, Charles J Vorosmarty, and Annette L Schloss. 1993. Global climate change and terrestrial net primary production. Nature 363, 6426 (1993), 234–240.

[3] John A Matthews. 1999. ON RECENTLY-DEGLACIATED SUBSTRATES. Ecosys- tems of disturbed ground 16 (1999), 17.

[4] Elaine Matthews and Inez Fung. 1987. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global biogeochemical cycles 1, 1 (1987), 61–86.

[5] AJ Carter and RJ Scholes. 1999. Generating a global database of soil properties. Environmentek CSIR 10 (1999).

[6] Freddy Nachtergaele, Harrij van Velthuizen, Luc Verelst, Niels Batjes, Koos Dijk-shoorn, Vincent van Engelen, Guenther Fischer, Arwyn Jones, Luca Montanarella, Monica Petri, et al. 2010. Harmonized world soil database. In Proceedings of the 19th world congress of soil science, soil solutions for a changing world, Brisbane, Australia, Vol. 2010. International Union of Soil Sciences, 34–37.

[7] Q Zhuang, AD McGuire, JM Melillo, JS Clein, RJ Dargaville, DW Kicklighter, RB Myneni, J Dong, VE Romanovsky, J Harden, et al. 2003. Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: A modeling analysis of the influences of soil thermal dynamics, Tellus, 55 B, 751-776, 2003. REPORT SERIESof the MIT Joint Program on the Science and Policy of Global Change (2003).

[8] Q. Zhuang, J. M. Melillo, D. W. Kicklighter, R. G. Prinn, A. D. McGuire, P. A. Steudler, B. S. Felzer, and S. Hu. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochemical Cycles 18, 3 (2004). doi:10.1029/2004GB002239

[9] DP Dee, SM Uppala, AJ Simmons, P Berrisford, P Poli, S Kobayashi, U Andrae, MA Balmaseda, G Balsamo, d P Bauer, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society 137, 656 (2011), 553–597.

[10] Kyle B Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, et al. 2021. FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data Discussions 2021 (2021), 1–111.

Downloads last month
91