ysn-rfd's picture
Upload My_own_NN_GPT.py
3448041 verified
"""
LICENSE:
Copyright 2025 ysnrfd
Timestamp: 2025-08-12
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to use,
copy, modify, and distribute the Software, subject to the following conditions:
1. The copyright notice, this permission notice, and all attribution information
regarding the original author (ysnrfd) must be preserved in their entirety
and must not be removed, altered, or obscured in any copies or derivative works.
2. Any modifications or derivative works must be clearly documented in a "CHANGELOG" or
"NOTICE" file included with the Software. This documentation must include a detailed
description of the changes made, the date of the modification, and the identity of
the modifier.
3. The Software is provided "as is", without warranty of any kind, express or implied.
The author shall not be liable for any damages arising from use of the Software.
4. Any attempt to remove or alter the original attribution or copyright information
constitutes a violation of this license and may result in legal action.
"""
import math
import numpy as np
import pickle
import os
import time
from typing import List, Tuple, Dict, Any, Optional, Union
import warnings
DEFAULT_DTYPE = np.float32
EPS = 1e-6
def softmax(x: np.ndarray, axis: int = -1, eps: float = EPS) -> np.ndarray:
x = x - np.max(x, axis=axis, keepdims=True)
e = np.exp(x)
return e / (np.sum(e, axis=axis, keepdims=True) + eps)
def gelu(x: np.ndarray) -> np.ndarray:
return 0.5 * x * (1.0 + np.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * x**3)))
def gelu_exact(x: np.ndarray) -> np.ndarray:
return 0.5 * x * (1.0 + math.erf(x / np.sqrt(2.0)))
def gelu_grad(x: np.ndarray) -> np.ndarray:
tanh_term = np.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * x**3))
sech2 = 1.0 - tanh_term**2
return 0.5 * (1.0 + tanh_term) + 0.5 * x * sech2 * np.sqrt(2.0 / np.pi) * (1.0 + 3.0 * 0.044715 * x**2)
def rms_norm(x: np.ndarray, weight: np.ndarray, eps: float = EPS) -> np.ndarray:
rms = np.sqrt(np.mean(x**2, axis=-1, keepdims=True) + eps)
return weight * (x / rms)
class BPETokenizer:
def __init__(self):
self.vocab: List[str] = []
self.w2i: Dict[str, int] = {}
self.i2w: Dict[int, str] = {}
self.merges: List[Tuple[str, str]] = []
self.cache: Dict[str, List[str]] = {}
self.special_tokens: List[str] = ['<pad>', '<unk>', '<bos>', '<eos>']
@staticmethod
def get_pairs(word: Tuple[str, ...]) -> Set[Tuple[str, str]]:
return set(zip(word, word[1:]))
@staticmethod
def bytes_to_unicode() -> Dict[int, str]:
bs = list(range(ord("!"), ord("~") + 1)) + \
list(range(ord("¡"), ord("¬") + 1)) + \
list(range(ord("®"), ord("ÿ") + 1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def preprocess(self, text: str) -> str:
byte_encoder = self.bytes_to_unicode()
text_bytes = text.encode("utf-8")
return "".join([byte_encoder[b] for b in text_bytes])
def build_from_text(self, texts: List[str], vocab_size: int = 500, min_freq: int = 2):
preprocessed = [self.preprocess(text) for text in texts]
char_freq = {}
for text in preprocessed:
for char in text:
char_freq[char] = char_freq.get(char, 0) + 1
self.vocab = self.special_tokens + sorted(char_freq.keys(), key=lambda x: -char_freq[x])
self.w2i = {w: i for i, w in enumerate(self.vocab)}
self.i2w = {i: w for w, i in self.w2i.items()}
if len(self.vocab) < vocab_size:
words = []
for text in preprocessed:
words.extend([' '.join(text)])
word_freq = {}
for word in words:
word_freq[word] = word_freq.get(word, 0) + 1
num_merges = vocab_size - len(self.vocab)
for i in range(num_merges):
pairs = {}
for word, freq in word_freq.items():
chars = word.split()
for j in range(len(chars) - 1):
pair = (chars[j], chars[j+1])
pairs[pair] = pairs.get(pair, 0) + freq
if not pairs:
break
best_pair = max(pairs, key=pairs.get)
new_token = ''.join(best_pair)
if new_token not in self.w2i:
self.vocab.append(new_token)
self.w2i[new_token] = len(self.vocab) - 1
self.i2w[len(self.vocab) - 1] = new_token
self.merges.append(best_pair)
new_word_freq = {}
for word, freq in word_freq.items():
new_word = word.replace(' '.join(best_pair), new_token)
new_word_freq[new_word] = freq
word_freq = new_word_freq
def encode(self, text: str, max_len: int = None, add_bos: bool = False, add_eos: bool = False) -> np.ndarray:
text = self.preprocess(text)
if add_bos:
text = self.special_tokens[2] + text
if add_eos:
text = text + self.special_tokens[3]
if text in self.cache:
tokens = self.cache[text]
else:
tokens = list(text)
for pair in self.merges:
new_tokens = []
i = 0
while i < len(tokens):
if i < len(tokens) - 1 and tokens[i] == pair[0] and tokens[i+1] == pair[1]:
new_tokens.append(pair[0] + pair[1])
i += 2
else:
new_tokens.append(tokens[i])
i += 1
tokens = new_tokens
self.cache[text] = tokens
ids = [self.w2i.get(t, self.w2i['<unk>']) for t in tokens]
if max_len is not None and len(ids) > max_len:
ids = ids[:max_len]
if max_len is not None and len(ids) < max_len:
ids = ids + [self.w2i['<pad>']] * (max_len - len(ids))
return np.array(ids, dtype=np.int32)
def decode(self, ids: Union[np.ndarray, List[int]]) -> str:
tokens = [self.i2w.get(int(i), '<unk>') for i in ids]
text = ''.join(tokens)
for token in self.special_tokens:
text = text.replace(token, '')
byte_decoder = {v: k for k, v in self.bytes_to_unicode().items()}
text_bytes = bytearray([byte_decoder[c] for c in text])
return text_bytes.decode('utf-8', errors='replace')
class Embedding:
def __init__(self, vocab_size: int, d_model: int, dtype=DEFAULT_DTYPE):
self.vocab_size = vocab_size
self.d_model = d_model
self.dtype = dtype
scale = 1.0 / np.sqrt(d_model)
self.W = np.random.normal(0, scale, (vocab_size, d_model)).astype(dtype)
self.grad_W = np.zeros_like(self.W)
def forward(self, idx: np.ndarray) -> np.ndarray:
return self.W[idx]
def backward(self, idx: np.ndarray, grad: np.ndarray):
np.add.at(self.grad_W, idx, grad)
class PositionalEmbedding:
def __init__(self, max_len: int, d_model: int, use_rotary: bool = False, dtype=DEFAULT_DTYPE):
self.max_len = max_len
self.d_model = d_model
self.use_rotary = use_rotary
self.dtype = dtype
if not use_rotary:
self.W = np.zeros((max_len, d_model), dtype=dtype)
for pos in range(max_len):
for i in range(0, d_model, 2):
self.W[pos, i] = math.sin(pos / (10000 ** (i / d_model)))
if i + 1 < d_model:
self.W[pos, i + 1] = math.cos(pos / (10000 ** (i / d_model)))
self.grad_W = np.zeros_like(self.W)
else:
self.rotary_freqs = self._create_rotary_frequencies()
def _create_rotary_frequencies(self) -> np.ndarray:
inv_freq = 1.0 / (10000 ** (np.arange(0, self.d_model, 2, dtype=self.dtype) / self.d_model))
return inv_freq
def apply_rotary_pos_emb(self, x: np.ndarray, seq_dim: int = -2) -> np.ndarray:
seq_len = x.shape[seq_dim]
t = np.arange(seq_len, dtype=self.dtype)
freqs = np.outer(t, self.rotary_freqs)
cos = np.cos(freqs)
sin = np.sin(freqs)
x1 = x[..., 0::2]
x2 = x[..., 1::2]
x_rotated1 = x1 * cos - x2 * sin
x_rotated2 = x1 * sin + x2 * cos
x_rotated = np.zeros_like(x)
x_rotated[..., 0::2] = x_rotated1
x_rotated[..., 1::2] = x_rotated2
return x_rotated
def forward(self, seq_len: int) -> np.ndarray:
if not self.use_rotary:
return self.W[:seq_len][np.newaxis, :, :]
return None
def backward(self, seq_len: int, grad: np.ndarray):
if not self.use_rotary:
np.add.at(self.grad_W, np.arange(seq_len), np.sum(grad, axis=0))
class LayerNorm:
def __init__(self, d_model: int, eps: float = EPS, rms_norm: bool = False, dtype=DEFAULT_DTYPE):
self.d_model = d_model
self.eps = eps
self.rms_norm = rms_norm
self.dtype = dtype
if not rms_norm:
self.gamma = np.ones((1, 1, d_model), dtype=dtype)
self.beta = np.zeros((1, 1, d_model), dtype=dtype)
self.grad_gamma = np.zeros_like(self.gamma)
self.grad_beta = np.zeros_like(self.beta)
else:
self.weight = np.ones((1, 1, d_model), dtype=dtype)
self.grad_weight = np.zeros_like(self.weight)
self.x = None
self.mean = None
self.var = None
self.x_norm = None
def forward(self, x: np.ndarray) -> np.ndarray:
self.x = x
if self.rms_norm:
rms = np.sqrt(np.mean(x**2, axis=-1, keepdims=True) + self.eps)
self.x_norm = x / rms
return self.weight * self.x_norm
else:
self.mean = np.mean(x, axis=-1, keepdims=True)
self.var = np.var(x, axis=-1, keepdims=True)
self.x_norm = (x - self.mean) / np.sqrt(self.var + self.eps)
return self.gamma * self.x_norm + self.beta
def backward(self, grad: np.ndarray) -> np.ndarray:
if self.rms_norm:
grad_x_norm = grad * self.weight
x_norm2 = self.x_norm ** 2
d_rms = -np.sum(grad_x_norm * self.x_norm, axis=-1, keepdims=True) / np.sqrt(np.mean(x_norm2, axis=-1, keepdims=True) + self.eps)
d_x = (grad_x_norm - self.x_norm * d_rms) / self.x_norm.shape[-1]
self.grad_weight = np.sum(grad * self.x_norm, axis=(0, 1), keepdims=True)
return d_x
else:
b, s, d = grad.shape
self.grad_gamma = np.sum(grad * self.x_norm, axis=(0, 1), keepdims=True)
self.grad_beta = np.sum(grad, axis=(0, 1), keepdims=True)
dx_norm = grad * self.gamma
var_eps = self.var + self.eps
dx = (1. / np.sqrt(var_eps)) * (dx_norm - np.mean(dx_norm, axis=-1, keepdims=True) -
self.x_norm * np.mean(dx_norm * self.x_norm, axis=-1, keepdims=True))
return dx
class FeedForward:
def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, dtype=DEFAULT_DTYPE):
self.d_model = d_model
self.d_ff = d_ff
self.dropout = dropout
self.dtype = dtype
scale_in = 1.0 / np.sqrt(d_model)
scale_out = 1.0 / np.sqrt(d_ff)
self.W1 = np.random.normal(0, scale_in, (d_model, d_ff)).astype(dtype)
self.b1 = np.zeros((1, 1, d_ff), dtype=dtype)
self.W2 = np.random.normal(0, scale_out, (d_ff, d_model)).astype(dtype)
self.b2 = np.zeros((1, 1, d_model), dtype=dtype)
self.grad_W1 = np.zeros_like(self.W1)
self.grad_b1 = np.zeros_like(self.b1)
self.grad_W2 = np.zeros_like(self.W2)
self.grad_b2 = np.zeros_like(self.b2)
self.x = None
self.hidden = None
self.hidden_act = None
self.dropout_mask1 = None
self.dropout_mask2 = None
def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray:
self.x = x
b, s, d = x.shape
self.hidden = x @ self.W1 + self.b1
self.hidden_act = gelu(self.hidden)
if training and self.dropout > 0:
self.dropout_mask1 = (np.random.rand(*self.hidden_act.shape) > self.dropout)
self.hidden_act = self.hidden_act * self.dropout_mask1 / (1 - self.dropout)
else:
self.dropout_mask1 = None
out = self.hidden_act @ self.W2 + self.b2
if training and self.dropout > 0:
self.dropout_mask2 = (np.random.rand(*out.shape) > self.dropout)
out = out * self.dropout_mask2 / (1 - self.dropout)
else:
self.dropout_mask2 = None
return out
def backward(self, grad: np.ndarray) -> np.ndarray:
b, s, d = grad.shape
if self.dropout_mask2 is not None:
grad = grad * self.dropout_mask2
self.grad_W2 = (self.hidden_act.reshape(-1, self.d_ff).T @ grad.reshape(-1, d)).reshape(self.d_ff, d)
self.grad_b2 = np.sum(grad, axis=(0, 1), keepdims=True)
dhidden_act = grad @ self.W2.T
if self.dropout_mask1 is not None:
dhidden_act = dhidden_act * self.dropout_mask1
dhidden = dhidden_act * gelu_grad(self.hidden)
self.grad_W1 = (self.x.reshape(-1, self.d_model).T @ dhidden.reshape(-1, self.d_ff)).reshape(self.d_model, self.d_ff)
self.grad_b1 = np.sum(dhidden, axis=(0, 1), keepdims=True)
dx = dhidden @ self.W1.T
return dx
class MultiHeadSelfAttention:
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1, use_rotary: bool = False, dtype=DEFAULT_DTYPE):
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.dropout = dropout
self.use_rotary = use_rotary
self.dtype = dtype
scale = 1.0 / np.sqrt(d_model)
self.W_q = np.random.normal(0, scale, (d_model, d_model)).astype(dtype)
self.W_k = np.random.normal(0, scale, (d_model, d_model)).astype(dtype)
self.W_v = np.random.normal(0, scale, (d_model, d_model)).astype(dtype)
self.W_o = np.random.normal(0, scale, (d_model, d_model)).astype(dtype)
self.grad_W_q = np.zeros_like(self.W_q)
self.grad_W_k = np.zeros_like(self.W_k)
self.grad_W_v = np.zeros_like(self.W_v)
self.grad_W_o = np.zeros_like(self.W_o)
self.cache = {}
self.dropout_mask = None
def split_heads(self, x: np.ndarray) -> np.ndarray:
b, s, d = x.shape
x = x.reshape(b, s, self.num_heads, self.head_dim)
return np.transpose(x, (0, 2, 1, 3))
def combine_heads(self, x: np.ndarray) -> np.ndarray:
x = np.transpose(x, (0, 2, 1, 3))
b, s, h, hd = x.shape
return x.reshape(b, s, h * hd)
def causal_mask(self, seq_len: int) -> np.ndarray:
return np.tril(np.ones((seq_len, seq_len), dtype=bool))
def apply_rotary_embeddings(self, q: np.ndarray, k: np.ndarray, seq_dim: int = -2) -> Tuple[np.ndarray, np.ndarray]:
q_rotated = PositionalEmbedding.apply_rotary_pos_emb(q, seq_dim=seq_dim)
k_rotated = PositionalEmbedding.apply_rotary_pos_emb(k, seq_dim=seq_dim)
return q_rotated, k_rotated
def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray:
b, s, d = x.shape
Q = x @ self.W_q
K = x @ self.W_k
V = x @ self.W_v
Qh = self.split_heads(Q)
Kh = self.split_heads(K)
Vh = self.split_heads(V)
if self.use_rotary:
Qh, Kh = self.apply_rotary_embeddings(Qh, Kh)
dk = self.head_dim
scores = Qh @ np.swapaxes(Kh, -1, -2) / np.sqrt(dk)
mask = self.causal_mask(s)[np.newaxis, np.newaxis, :, :]
scores = np.where(mask, scores, -np.inf)
attn = softmax(scores, axis=-1)
if training and self.dropout > 0:
self.dropout_mask = (np.random.rand(*attn.shape) > self.dropout)
attn = attn * self.dropout_mask / (1 - self.dropout)
else:
self.dropout_mask = None
attn_out = attn @ Vh
out = self.combine_heads(attn_out) @ self.W_o
self.cache = {
'x': x, 'Q': Q, 'K': K, 'V': V,
'Qh': Qh, 'Kh': Kh, 'Vh': Vh,
'scores': scores, 'attn': attn, 'attn_out': attn_out,
'mask': mask
}
return out
def backward(self, grad_out: np.ndarray) -> np.ndarray:
x = self.cache['x']
Qh = self.cache['Qh']
Kh = self.cache['Kh']
Vh = self.cache['Vh']
attn = self.cache['attn']
attn_out = self.cache['attn_out']
mask = self.cache['mask']
b, s, d = grad_out.shape
dk = self.head_dim
if self.dropout_mask is not None:
attn = attn * self.dropout_mask
out_concat = self.combine_heads(attn_out)
self.grad_W_o = out_concat.reshape(-1, d).T @ grad_out.reshape(-1, d)
d_out_concat = grad_out @ self.W_o.T
d_attn_out = d_out_concat.reshape(b, s, self.num_heads, self.head_dim)
d_attn_out = np.transpose(d_attn_out, (0, 2, 1, 3))
dVh = np.matmul(np.swapaxes(attn, -1, -2), d_attn_out)
dattn = np.matmul(d_attn_out, np.swapaxes(Vh, -1, -2))
sft = attn
sum_d = np.sum(dattn * sft, axis=-1, keepdims=True)
dscores = sft * (dattn - sum_d)
dscores = np.where(mask, dscores, 0.0)
dQh = np.matmul(dscores, Kh) / np.sqrt(dk)
dKh = np.matmul(np.swapaxes(dscores, -1, -2), Qh) / np.sqrt(dk)
dQ = np.transpose(dQh, (0, 2, 1, 3)).reshape(b, s, d)
dK = np.transpose(dKh, (0, 2, 1, 3)).reshape(b, s, d)
dV = np.transpose(dVh, (0, 2, 1, 3)).reshape(b, s, d)
self.grad_W_q = x.reshape(-1, d).T @ dQ.reshape(-1, d)
self.grad_W_k = x.reshape(-1, d).T @ dK.reshape(-1, d)
self.grad_W_v = x.reshape(-1, d).T @ dV.reshape(-1, d)
dx_q = dQ @ self.W_q.T
dx_k = dK @ self.W_k.T
dx_v = dV @ self.W_v.T
dx = dx_q + dx_k + dx_v
return dx
class DecoderBlock:
def __init__(self, d_model: int, num_heads: int, d_ff: int, dropout: float = 0.1,
layer_scale: bool = False, layer_scale_init: float = 1e-4, use_rotary: bool = False):
self.mha = MultiHeadSelfAttention(d_model, num_heads, dropout, use_rotary)
self.ln1 = LayerNorm(d_model, rms_norm=False)
self.ff = FeedForward(d_model, d_ff, dropout)
self.ln2 = LayerNorm(d_model, rms_norm=False)
self.dropout = dropout
self.layer_scale = layer_scale
self.layer_scale_init = layer_scale_init
if layer_scale:
self.gamma1 = np.ones((1, 1, d_model)) * layer_scale_init
self.gamma2 = np.ones((1, 1, d_model)) * layer_scale_init
def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray:
attn_out = self.mha.forward(x, training)
if self.layer_scale:
attn_out = attn_out * self.gamma1
x = x + attn_out
x = self.ln1.forward(x)
ff_out = self.ff.forward(x, training)
if self.layer_scale:
ff_out = ff_out * self.gamma2
x = x + ff_out
x = self.ln2.forward(x)
return x
def backward(self, grad: np.ndarray) -> np.ndarray:
d_ln2 = self.ln2.backward(grad)
d_ff = self.ff.backward(d_ln2)
if self.layer_scale:
d_ff = d_ff * self.gamma2
d_res = d_ln2 + d_ff
d_ln1 = self.ln1.backward(d_res)
d_mha = self.mha.backward(d_ln1)
if self.layer_scale:
d_mha = d_mha * self.gamma1
dx = d_mha + d_ln1
return dx
class GPT:
def __init__(self, vocab_size: int, max_len: int = 512, d_model: int = 768, num_heads: int = 12,
d_ff: int = 3072, num_layers: int = 12, dropout: float = 0.1,
use_rotary: bool = False, rms_norm: bool = False, layer_scale: bool = False,
dtype=DEFAULT_DTYPE):
self.vocab_size = vocab_size
self.max_len = max_len
self.d_model = d_model
self.dtype = dtype
self.embed = Embedding(vocab_size, d_model, dtype)
self.pos_embed = PositionalEmbedding(max_len, d_model, use_rotary, dtype)
self.layers = [
DecoderBlock(d_model, num_heads, d_ff, dropout, layer_scale, use_rotary=use_rotary)
for _ in range(num_layers)
]
self.ln_f = LayerNorm(d_model, rms_norm=rms_norm, dtype=dtype)
self.dropout = dropout
self.W_out = np.random.normal(0, 1.0 / np.sqrt(d_model), (d_model, vocab_size)).astype(dtype)
self.grad_W_out = np.zeros_like(self.W_out)
self.opt_states = {}
self.lr = 0.0
self.beta1 = 0.0
self.beta2 = 0.0
self.eps = 0.0
self.opt_step = 0
self.training = True
def parameters(self) -> List[Tuple[str, np.ndarray]]:
params = []
params.append(('embed.W', self.embed.W))
if not self.pos_embed.use_rotary:
params.append(('pos.W', self.pos_embed.W))
for i, layer in enumerate(self.layers):
params.append((f'layer{i}.mha.W_q', layer.mha.W_q))
params.append((f'layer{i}.mha.W_k', layer.mha.W_k))
params.append((f'layer{i}.mha.W_v', layer.mha.W_v))
params.append((f'layer{i}.mha.W_o', layer.mha.W_o))
params.append((f'layer{i}.ln1.gamma', layer.ln1.gamma))
params.append((f'layer{i}.ln1.beta', layer.ln1.beta))
params.append((f'layer{i}.ff.W1', layer.ff.W1))
params.append((f'layer{i}.ff.b1', layer.ff.b1))
params.append((f'layer{i}.ff.W2', layer.ff.W2))
params.append((f'layer{i}.ff.b2', layer.ff.b2))
params.append((f'layer{i}.ln2.gamma', layer.ln2.gamma))
params.append((f'layer{i}.ln2.beta', layer.ln2.beta))
if layer.layer_scale:
params.append((f'layer{i}.gamma1', layer.gamma1))
params.append((f'layer{i}.gamma2', layer.gamma2))
if not self.ln_f.rms_norm:
params.append(('ln_f.gamma', self.ln_f.gamma))
params.append(('ln_f.beta', self.ln_f.beta))
else:
params.append(('ln_f.weight', self.ln_f.weight))
params.append(('W_out', self.W_out))
return params
def zero_grads(self):
self.embed.grad_W.fill(0.0)
if not self.pos_embed.use_rotary:
self.pos_embed.grad_W.fill(0.0)
for layer in self.layers:
layer.mha.grad_W_q.fill(0.0)
layer.mha.grad_W_k.fill(0.0)
layer.mha.grad_W_v.fill(0.0)
layer.mha.grad_W_o.fill(0.0)
layer.ln1.grad_gamma.fill(0.0)
layer.ln1.grad_beta.fill(0.0)
layer.ff.grad_W1.fill(0.0)
layer.ff.grad_b1.fill(0.0)
layer.ff.grad_W2.fill(0.0)
layer.ff.grad_b2.fill(0.0)
layer.ln2.grad_gamma.fill(0.0)
layer.ln2.grad_beta.fill(0.0)
if not self.ln_f.rms_norm:
self.ln_f.grad_gamma.fill(0.0)
self.ln_f.grad_beta.fill(0.0)
else:
self.ln_f.grad_weight.fill(0.0)
self.grad_W_out.fill(0.0)
def forward(self, idx: np.ndarray, training: bool = True) -> np.ndarray:
self.training = training
b, s = idx.shape
x = self.embed.forward(idx)
if not self.pos_embed.use_rotary:
x = x + self.pos_embed.forward(s)
for layer in self.layers:
x = layer.forward(x, training)
x = self.ln_f.forward(x)
if training and self.dropout > 0:
dropout_mask = (np.random.rand(*x.shape) > self.dropout)
x = x * dropout_mask / (1 - self.dropout)
logits = x.reshape(-1, self.d_model) @ self.W_out
logits = logits.reshape(b, s, -1)
self._cache = {'x': x, 'idx': idx}
return logits
def loss_and_backward(self, idx_in: np.ndarray, idx_target: np.ndarray,
grad_clip: float = 1.0) -> float:
b, s = idx_in.shape
logits = self.forward(idx_in, training=True)
vocab = logits.shape[-1]
logits_flat = logits.reshape(-1, vocab)
targets_flat = idx_target.reshape(-1)
probs = softmax(logits_flat, axis=1)
log_probs = np.log(np.clip(probs, 1e-12, 1.0))
loss = -np.mean(log_probs[np.arange(len(targets_flat)), targets_flat])
grad_logits = probs.copy()
grad_logits[np.arange(grad_logits.shape[0]), targets_flat] -= 1
grad_logits = grad_logits.reshape(b, s, vocab) / (b * s)
x = self._cache['x']
self.grad_W_out = x.reshape(-1, self.d_model).T @ grad_logits.reshape(-1, vocab)
dx = grad_logits.reshape(-1, vocab) @ self.W_out.T
dx = dx.reshape(b, s, self.d_model)
d_ln = self.ln_f.backward(dx)
grad = d_ln
for layer in reversed(self.layers):
grad = layer.backward(grad)
idx = self._cache['idx']
self.embed.backward(idx, grad)
if not self.pos_embed.use_rotary:
self.pos_embed.backward(s, grad)
if grad_clip > 0:
total_norm = 0.0
for _, param in self.parameters():
if param.grad is not None:
param_norm = np.linalg.norm(param.grad)
total_norm += param_norm ** 2
total_norm = np.sqrt(total_norm)
clip_coef = min(grad_clip / (total_norm + EPS), 1.0)
if clip_coef < 1:
for _, param in self.parameters():
if param.grad is not None:
param.grad *= clip_coef
return loss
def init_optimizer(self, lr: float = 6e-4, betas=(0.9, 0.95), eps=1e-8,
weight_decay: float = 0.1, warmup_steps: int = 2000):
self.lr = lr
self.beta1 = betas[0]
self.beta2 = betas[1]
self.eps = eps
self.weight_decay = weight_decay
self.warmup_steps = warmup_steps
self.opt_step = 0
self.opt_states = {}
for name, param in self.parameters():
self.opt_states[name] = {
'm': np.zeros_like(param),
'v': np.zeros_like(param)
}
def step_optimizer(self, current_step: Optional[int] = None):
if current_step is not None:
self.opt_step = current_step
self.opt_step += 1
if self.warmup_steps > 0:
lr = self.lr * min(self.opt_step ** -0.5, self.opt_step * self.warmup_steps ** -1.5)
else:
lr = self.lr
def update(name: str, param: np.ndarray, grad: np.ndarray):
if 'W_' in name and self.weight_decay > 0:
grad = grad + self.weight_decay * param
state = self.opt_states[name]
state['m'] = self.beta1 * state['m'] + (1 - self.beta1) * grad
state['v'] = self.beta2 * state['v'] + (1 - self.beta2) * (grad ** 2)
m_hat = state['m'] / (1 - self.beta1 ** self.opt_step)
v_hat = state['v'] / (1 - self.beta2 ** self.opt_step)
param -= lr * m_hat / (np.sqrt(v_hat) + self.eps)
for name, param in self.parameters():
if name in ['embed.W', 'pos.W', 'W_out'] or 'W_' in name:
grad = getattr(self, f"grad_{name.split('.')[0]}")
else:
grad = getattr(self, f"grad_{name.replace('.', '_')}")
update(name, param, grad)
def enable_gradient_checkpointing(self):
warnings.warn("Gradient checkpointing is not implemented in this NumPy version", RuntimeWarning)
def convert_to_rms_norm(self):
self.ln_f = LayerNorm(self.d_model, rms_norm=True, dtype=self.dtype)
for layer in self.layers:
layer.ln1 = LayerNorm(self.d_model, rms_norm=True, dtype=self.dtype)
layer.ln2 = LayerNorm(self.d_model, rms_norm=True, dtype=self.dtype)
def save(self, path: str, include_optimizer: bool = False):
data = {
'config': {
'vocab_size': self.vocab_size,
'max_len': self.max_len,
'd_model': self.d_model,
'num_heads': self.layers[0].mha.num_heads,
'd_ff': self.layers[0].ff.d_ff,
'num_layers': len(self.layers),
'dropout': self.dropout,
'use_rotary': self.pos_embed.use_rotary,
'rms_norm': self.ln_f.rms_norm,
'layer_scale': any(layer.layer_scale for layer in self.layers)
},
'embed.W': self.embed.W,
'pos.W': self.pos_embed.W if not self.pos_embed.use_rotary else None,
'layers': [],
'ln_f.gamma': self.ln_f.gamma if not self.ln_f.rms_norm else None,
'ln_f.beta': self.ln_f.beta if not self.ln_f.rms_norm else None,
'ln_f.weight': self.ln_f.weight if self.ln_f.rms_norm else None,
'W_out': self.W_out
}
for layer in self.layers:
layer_data = {
'mha.W_q': layer.mha.W_q,
'mha.W_k': layer.mha.W_k,
'mha.W_v': layer.mha.W_v,
'mha.W_o': layer.mha.W_o,
'ff.W1': layer.ff.W1,
'ff.b1': layer.ff.b1,
'ff.W2': layer.ff.W2,
'ff.b2': layer.ff.b2,
'ln1.gamma': layer.ln1.gamma,
'ln1.beta': layer.ln1.beta,
'ln2.gamma': layer.ln2.gamma,
'ln2.beta': layer.ln2.beta
}
if layer.layer_scale:
layer_data['gamma1'] = layer.gamma1
layer_data['gamma2'] = layer.gamma2
data['layers'].append(layer_data)
if include_optimizer and self.opt_states:
data['optimizer'] = {
'lr': self.lr,
'beta1': self.beta1,
'beta2': self.beta2,
'eps': self.eps,
'weight_decay': self.weight_decay,
'warmup_steps': self.warmup_steps,
'opt_step': self.opt_step,
'states': {k: {'m': v['m'], 'v': v['v']} for k, v in self.opt_states.items()}
}
os.makedirs(os.path.dirname(os.path.abspath(path)), exist_ok=True)
with open(path, 'wb') as f:
pickle.dump(data, f)
def load(self, path: str, strict: bool = True):
with open(path, 'rb') as f:
data = pickle.load(f)
self.embed.W = data['embed.W']
if not self.pos_embed.use_rotary and data['pos.W'] is not None:
self.pos_embed.W = data['pos.W']
for layer, ld in zip(self.layers, data['layers']):
layer.mha.W_q = ld['mha.W_q']
layer.mha.W_k = ld['mha.W_k']
layer.mha.W_v = ld['mha.W_v']
layer.mha.W_o = ld['mha.W_o']
layer.ff.W1 = ld['ff.W1']
layer.ff.b1 = ld['ff.b1']
layer.ff.W2 = ld['ff.W2']
layer.ff.b2 = ld['ff.b2']
layer.ln1.gamma = ld['ln1.gamma']
layer.ln1.beta = ld['ln1.beta']
layer.ln2.gamma = ld['ln2.gamma']
layer.ln2.beta = ld['ln2.beta']
if hasattr(layer, 'gamma1') and 'gamma1' in ld:
layer.gamma1 = ld['gamma1']
if hasattr(layer, 'gamma2') and 'gamma2' in ld:
layer.gamma2 = ld['gamma2']
if not self.ln_f.rms_norm:
self.ln_f.gamma = data['ln_f.gamma']
self.ln_f.beta = data['ln_f.beta']
else:
self.ln_f.weight = data['ln_f.weight']
self.W_out = data['W_out']
if 'optimizer' in data and self.opt_states:
opt_data = data['optimizer']
self.lr = opt_data['lr']
self.beta1 = opt_data['beta1']
self.beta2 = opt_data['beta2']
self.eps = opt_data['eps']
self.weight_decay = opt_data.get('weight_decay', 0.1)
self.warmup_steps = opt_data.get('warmup_steps', 2000)
self.opt_step = opt_data['opt_step']
for name, state in opt_data['states'].items():
if name in self.opt_states:
self.opt_states[name]['m'] = state['m']
self.opt_states[name]['v'] = state['v']
def generate(self, idx_start: List[int], max_new_tokens: int = 50,
temperature: float = 1.0, top_k: Optional[int] = None,
top_p: Optional[float] = None, do_sample: bool = True) -> List[int]:
idx = list(idx_start)
for _ in range(max_new_tokens):
input_ids = np.array([idx[-self.max_len:]], dtype=np.int32)
logits = self.forward(input_ids, training=False)
next_logits = logits[0, -1] / max(temperature, 1e-8)
if top_k is not None and top_k > 0:
top_k = min(top_k, len(next_logits))
top_k_idx = np.argpartition(next_logits, -top_k)[-top_k:]
top_k_logits = next_logits[top_k_idx]
if top_p is not None and top_p < 1.0:
sorted_idx = np.argsort(top_k_logits)[::-1]
sorted_logits = top_k_logits[sorted_idx]
cumulative_probs = np.cumsum(softmax(sorted_logits))
cutoff_idx = np.where(cumulative_probs > top_p)[0][0]
top_p_idx = top_k_idx[sorted_idx[:cutoff_idx + 1]]
top_p_logits = next_logits[top_p_idx]
probs = softmax(top_p_logits)
next_id = np.random.choice(top_p_idx, p=probs) if do_sample else top_p_idx[np.argmax(top_p_logits)]
else:
probs = softmax(top_k_logits)
next_id = np.random.choice(top_k_idx, p=probs) if do_sample else top_k_idx[np.argmax(top_k_logits)]
else:
if top_p is not None and top_p < 1.0:
sorted_idx = np.argsort(next_logits)[::-1]
sorted_logits = next_logits[sorted_idx]
cumulative_probs = np.cumsum(softmax(sorted_logits))
cutoff_idx = np.where(cumulative_probs > top_p)[0][0]
top_p_idx = sorted_idx[:cutoff_idx + 1]
top_p_logits = next_logits[top_p_idx]
probs = softmax(top_p_logits)
next_id = np.random.choice(top_p_idx, p=probs) if do_sample else top_p_idx[np.argmax(top_p_logits)]
else:
probs = softmax(next_logits)
next_id = np.random.choice(len(probs), p=probs) if do_sample else np.argmax(probs)
idx.append(int(next_id))
return idx
def evaluate(self, val_data: np.ndarray, seq_len: int, batch_size: int,
tokenizer: Any) -> Tuple[float, float]:
total_loss = 0.0
total_tokens = 0
n_batches = 0
for xb, yb in get_batches_from_text(val_data, seq_len, batch_size, tokenizer):
original_dropout = self.dropout
self.dropout = 0.0
b, s = xb.shape
logits = self.forward(xb, training=False)
vocab = logits.shape[-1]
logits_flat = logits.reshape(-1, vocab)
targets_flat = yb.reshape(-1)
probs = softmax(logits_flat, axis=1)
log_probs = np.log(np.clip(probs, 1e-12, 1.0))
loss = -np.mean(log_probs[np.arange(len(targets_flat)), targets_flat])
total_loss += loss * len(targets_flat)
total_tokens += len(targets_flat)
n_batches += 1
self.dropout = original_dropout
avg_loss = total_loss / total_tokens
perplexity = np.exp(avg_loss)
return avg_loss, perplexity
class Trainer:
def __init__(self, model: GPT, tokenizer: Any, train_data: str,
val_data: Optional[str] = None, seq_len: int = 1024,
batch_size: int = 8, grad_accum_steps: int = 1):
self.model = model
self.tokenizer = tokenizer
self.train_data = train_data
self.val_data = val_data
self.seq_len = seq_len
self.batch_size = batch_size
self.grad_accum_steps = grad_accum_steps
self.history = {'train_loss': [], 'val_loss': [], 'perplexity': [], 'lr': []}
self.best_val_loss = float('inf')
self.patience_counter = 0
def train(self, epochs: int = 10, lr: float = 3e-4, weight_decay: float = 0.1,
warmup_steps: int = 2000, grad_clip: float = 1.0,
val_interval: int = 1, early_stopping_patience: int = 5,
checkpoint_dir: str = 'checkpoints', save_best: bool = True):
os.makedirs(checkpoint_dir, exist_ok=True)
self.model.init_optimizer(
lr=lr,
weight_decay=weight_decay,
warmup_steps=warmup_steps
)
total_steps = 0
start_time = time.time()
for epoch in range(1, epochs + 1):
print(f"\nEpoch {epoch}/{epochs}")
epoch_start = time.time()
total_loss = 0.0
n_batches = 0
total_steps += len(self.train_data) // (self.seq_len * self.batch_size)
for i, (xb, yb) in enumerate(get_batches_from_text(
self.train_data, self.seq_len, self.batch_size, self.tokenizer)):
loss = self.model.loss_and_backward(xb, yb, grad_clip)
total_loss += loss
n_batches += 1
if (i + 1) % self.grad_accum_steps == 0 or (i + 1) == n_batches:
self.model.step_optimizer(total_steps)
self.model.zero_grads()
if i % 10 == 0:
current_lr = lr * min(total_steps ** -0.5, total_steps * warmup_steps ** -1.5) if warmup_steps > 0 else lr
print(f'Step {i+1}/{n_batches}, Loss: {loss:.4f}, LR: {current_lr:.2e}', end='\r')
avg_loss = total_loss / max(1, n_batches)
self.history['train_loss'].append(avg_loss)
val_loss = float('inf')
perplexity = float('inf')
if self.val_data and epoch % val_interval == 0:
val_loss, perplexity = self.model.evaluate(
self.val_data, self.seq_len, self.batch_size, self.tokenizer
)
self.history['val_loss'].append(val_loss)
self.history['perplexity'].append(perplexity)
if save_best and val_loss < self.best_val_loss:
self.best_val_loss = val_loss
best_path = os.path.join(checkpoint_dir, 'best_model.pkl')
self.model.save(best_path, include_optimizer=True)
print(f"\n[INFO] Best model saved with validation loss: {val_loss:.4f}")
self.patience_counter = 0
else:
self.patience_counter += 1
epoch_time = time.time() - epoch_start
print(f"\nEpoch {epoch} completed in {epoch_time:.2f}s | "
f"Train Loss: {avg_loss:.4f} | "
f"Val Loss: {val_loss:.4f} | "
f"Perplexity: {perplexity:.2f}")
start_prompt = 'دوست '
start_ids = [self.tokenizer.w2i.get(c, self.tokenizer.w2i['<unk>']) for c in start_prompt]
gen = self.model.generate(start_ids, max_new_tokens=100, temperature=0.8, top_k=50, top_p=0.9)
print('Sample:', self.tokenizer.decode(np.array(gen)))
if epoch % 5 == 0:
ckpt_path = os.path.join(checkpoint_dir, f'model_epoch_{epoch}.pkl')
self.model.save(ckpt_path)
print(f"[INFO] Checkpoint saved to {ckpt_path}")
if early_stopping_patience > 0 and self.patience_counter >= early_stopping_patience:
print(f"\n[INFO] Early stopping triggered after {epoch} epochs")
break
total_time = time.time() - start_time
print(f"\nTraining completed in {total_time/60:.2f} minutes")
return self.history
if __name__ == '__main__':
seq_len = 128
batch_size = 8
epochs = 50
lr = 6e-4
try:
with open('sample_text.txt', 'r', encoding='utf-8') as f:
sample_text = f.read()
except:
sample_text = """
دوست دارم برنامه‌نویسی کنم. این یک متن نمونه است برای آموزش مدل GPT کوچک.
مدل می‌تواند کاراکترها را یاد بگیرد و متن تولید کند.
هوش مصنوعی یکی از حوزه‌های پررونق در دنیای امروز است.
مدل‌های زبانی بزرگ قادر به انجام کارهای شگفت‌انگیزی هستند.
در این مثال ساده، ما یک مدل GPT کوچک را پیاده‌سازی می‌کنیم.
"""
train_ratio = 0.9
split_idx = int(len(sample_text) * train_ratio)
train_text = sample_text[:split_idx]
val_text = sample_text[split_idx:]
print("Building tokenizer...")
tok = BPETokenizer()
tok.build_from_text([train_text], vocab_size=500)
vocab_size = len(tok.vocab)
print(f'Vocabulary size: {vocab_size}')
print("Building model...")
model = GPT(
vocab_size=vocab_size,
max_len=seq_len,
d_model=256,
num_heads=8,
d_ff=1024,
num_layers=6,
dropout=0.1,
use_rotary=False,
rms_norm=True,
layer_scale=True
)
print("\nStarting training...")
trainer = Trainer(
model=model,
tokenizer=tok,
train_data=train_text,
val_data=val_text,
seq_len=seq_len,
batch_size=batch_size
)
history = trainer.train(
epochs=epochs,
lr=lr,
weight_decay=0.1,
warmup_steps=1000,
grad_clip=1.0,
val_interval=1,
early_stopping_patience=10,
checkpoint_dir='checkpoints'
)
model.save('gpt_final.pkl')
print('Final model saved -> gpt_final.pkl')
"""
LICENSE:
Copyright 2025 ysnrfd
Timestamp: 2025-08-12
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to use,
copy, modify, and distribute the Software, subject to the following conditions:
1. The copyright notice, this permission notice, and all attribution information
regarding the original author (ysnrfd) must be preserved in their entirety
and must not be removed, altered, or obscured in any copies or derivative works.
2. Any modifications or derivative works must be clearly documented in a "CHANGELOG" or
"NOTICE" file included with the Software. This documentation must include a detailed
description of the changes made, the date of the modification, and the identity of
the modifier.
3. The Software is provided "as is", without warranty of any kind, express or implied.
The author shall not be liable for any damages arising from use of the Software.
4. Any attempt to remove or alter the original attribution or copyright information
constitutes a violation of this license and may result in legal action.
"""