|
""" |
|
LICENSE: |
|
|
|
Copyright 2025 ysnrfd |
|
|
|
Timestamp: 2025-08-12 |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
of this software and associated documentation files (the "Software"), to use, |
|
copy, modify, and distribute the Software, subject to the following conditions: |
|
|
|
1. The copyright notice, this permission notice, and all attribution information |
|
regarding the original author (ysnrfd) must be preserved in their entirety |
|
and must not be removed, altered, or obscured in any copies or derivative works. |
|
|
|
2. Any modifications or derivative works must be clearly documented in a "CHANGELOG" or |
|
"NOTICE" file included with the Software. This documentation must include a detailed |
|
description of the changes made, the date of the modification, and the identity of |
|
the modifier. |
|
|
|
3. The Software is provided "as is", without warranty of any kind, express or implied. |
|
The author shall not be liable for any damages arising from use of the Software. |
|
|
|
4. Any attempt to remove or alter the original attribution or copyright information |
|
constitutes a violation of this license and may result in legal action. |
|
|
|
""" |
|
|
|
import math |
|
import numpy as np |
|
import pickle |
|
import os |
|
import time |
|
from typing import List, Tuple, Dict, Any, Optional, Union |
|
import warnings |
|
DEFAULT_DTYPE = np.float32 |
|
EPS = 1e-6 |
|
|
|
def softmax(x: np.ndarray, axis: int = -1, eps: float = EPS) -> np.ndarray: |
|
x = x - np.max(x, axis=axis, keepdims=True) |
|
e = np.exp(x) |
|
return e / (np.sum(e, axis=axis, keepdims=True) + eps) |
|
|
|
def gelu(x: np.ndarray) -> np.ndarray: |
|
return 0.5 * x * (1.0 + np.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * x**3))) |
|
|
|
def gelu_exact(x: np.ndarray) -> np.ndarray: |
|
return 0.5 * x * (1.0 + math.erf(x / np.sqrt(2.0))) |
|
|
|
def gelu_grad(x: np.ndarray) -> np.ndarray: |
|
tanh_term = np.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * x**3)) |
|
sech2 = 1.0 - tanh_term**2 |
|
return 0.5 * (1.0 + tanh_term) + 0.5 * x * sech2 * np.sqrt(2.0 / np.pi) * (1.0 + 3.0 * 0.044715 * x**2) |
|
|
|
def rms_norm(x: np.ndarray, weight: np.ndarray, eps: float = EPS) -> np.ndarray: |
|
rms = np.sqrt(np.mean(x**2, axis=-1, keepdims=True) + eps) |
|
return weight * (x / rms) |
|
|
|
class BPETokenizer: |
|
def __init__(self): |
|
self.vocab: List[str] = [] |
|
self.w2i: Dict[str, int] = {} |
|
self.i2w: Dict[int, str] = {} |
|
self.merges: List[Tuple[str, str]] = [] |
|
self.cache: Dict[str, List[str]] = {} |
|
self.special_tokens: List[str] = ['<pad>', '<unk>', '<bos>', '<eos>'] |
|
|
|
@staticmethod |
|
def get_pairs(word: Tuple[str, ...]) -> Set[Tuple[str, str]]: |
|
return set(zip(word, word[1:])) |
|
|
|
@staticmethod |
|
def bytes_to_unicode() -> Dict[int, str]: |
|
bs = list(range(ord("!"), ord("~") + 1)) + \ |
|
list(range(ord("¡"), ord("¬") + 1)) + \ |
|
list(range(ord("®"), ord("ÿ") + 1)) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8 + n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
def preprocess(self, text: str) -> str: |
|
byte_encoder = self.bytes_to_unicode() |
|
text_bytes = text.encode("utf-8") |
|
return "".join([byte_encoder[b] for b in text_bytes]) |
|
|
|
def build_from_text(self, texts: List[str], vocab_size: int = 500, min_freq: int = 2): |
|
preprocessed = [self.preprocess(text) for text in texts] |
|
char_freq = {} |
|
for text in preprocessed: |
|
for char in text: |
|
char_freq[char] = char_freq.get(char, 0) + 1 |
|
self.vocab = self.special_tokens + sorted(char_freq.keys(), key=lambda x: -char_freq[x]) |
|
self.w2i = {w: i for i, w in enumerate(self.vocab)} |
|
self.i2w = {i: w for w, i in self.w2i.items()} |
|
if len(self.vocab) < vocab_size: |
|
words = [] |
|
for text in preprocessed: |
|
words.extend([' '.join(text)]) |
|
word_freq = {} |
|
for word in words: |
|
word_freq[word] = word_freq.get(word, 0) + 1 |
|
num_merges = vocab_size - len(self.vocab) |
|
for i in range(num_merges): |
|
pairs = {} |
|
for word, freq in word_freq.items(): |
|
chars = word.split() |
|
for j in range(len(chars) - 1): |
|
pair = (chars[j], chars[j+1]) |
|
pairs[pair] = pairs.get(pair, 0) + freq |
|
if not pairs: |
|
break |
|
best_pair = max(pairs, key=pairs.get) |
|
new_token = ''.join(best_pair) |
|
if new_token not in self.w2i: |
|
self.vocab.append(new_token) |
|
self.w2i[new_token] = len(self.vocab) - 1 |
|
self.i2w[len(self.vocab) - 1] = new_token |
|
self.merges.append(best_pair) |
|
new_word_freq = {} |
|
for word, freq in word_freq.items(): |
|
new_word = word.replace(' '.join(best_pair), new_token) |
|
new_word_freq[new_word] = freq |
|
word_freq = new_word_freq |
|
|
|
def encode(self, text: str, max_len: int = None, add_bos: bool = False, add_eos: bool = False) -> np.ndarray: |
|
text = self.preprocess(text) |
|
if add_bos: |
|
text = self.special_tokens[2] + text |
|
if add_eos: |
|
text = text + self.special_tokens[3] |
|
if text in self.cache: |
|
tokens = self.cache[text] |
|
else: |
|
tokens = list(text) |
|
for pair in self.merges: |
|
new_tokens = [] |
|
i = 0 |
|
while i < len(tokens): |
|
if i < len(tokens) - 1 and tokens[i] == pair[0] and tokens[i+1] == pair[1]: |
|
new_tokens.append(pair[0] + pair[1]) |
|
i += 2 |
|
else: |
|
new_tokens.append(tokens[i]) |
|
i += 1 |
|
tokens = new_tokens |
|
self.cache[text] = tokens |
|
ids = [self.w2i.get(t, self.w2i['<unk>']) for t in tokens] |
|
if max_len is not None and len(ids) > max_len: |
|
ids = ids[:max_len] |
|
if max_len is not None and len(ids) < max_len: |
|
ids = ids + [self.w2i['<pad>']] * (max_len - len(ids)) |
|
return np.array(ids, dtype=np.int32) |
|
|
|
def decode(self, ids: Union[np.ndarray, List[int]]) -> str: |
|
tokens = [self.i2w.get(int(i), '<unk>') for i in ids] |
|
text = ''.join(tokens) |
|
for token in self.special_tokens: |
|
text = text.replace(token, '') |
|
byte_decoder = {v: k for k, v in self.bytes_to_unicode().items()} |
|
text_bytes = bytearray([byte_decoder[c] for c in text]) |
|
return text_bytes.decode('utf-8', errors='replace') |
|
|
|
class Embedding: |
|
def __init__(self, vocab_size: int, d_model: int, dtype=DEFAULT_DTYPE): |
|
self.vocab_size = vocab_size |
|
self.d_model = d_model |
|
self.dtype = dtype |
|
scale = 1.0 / np.sqrt(d_model) |
|
self.W = np.random.normal(0, scale, (vocab_size, d_model)).astype(dtype) |
|
self.grad_W = np.zeros_like(self.W) |
|
|
|
def forward(self, idx: np.ndarray) -> np.ndarray: |
|
return self.W[idx] |
|
|
|
def backward(self, idx: np.ndarray, grad: np.ndarray): |
|
np.add.at(self.grad_W, idx, grad) |
|
|
|
class PositionalEmbedding: |
|
def __init__(self, max_len: int, d_model: int, use_rotary: bool = False, dtype=DEFAULT_DTYPE): |
|
self.max_len = max_len |
|
self.d_model = d_model |
|
self.use_rotary = use_rotary |
|
self.dtype = dtype |
|
if not use_rotary: |
|
self.W = np.zeros((max_len, d_model), dtype=dtype) |
|
for pos in range(max_len): |
|
for i in range(0, d_model, 2): |
|
self.W[pos, i] = math.sin(pos / (10000 ** (i / d_model))) |
|
if i + 1 < d_model: |
|
self.W[pos, i + 1] = math.cos(pos / (10000 ** (i / d_model))) |
|
self.grad_W = np.zeros_like(self.W) |
|
else: |
|
self.rotary_freqs = self._create_rotary_frequencies() |
|
|
|
def _create_rotary_frequencies(self) -> np.ndarray: |
|
inv_freq = 1.0 / (10000 ** (np.arange(0, self.d_model, 2, dtype=self.dtype) / self.d_model)) |
|
return inv_freq |
|
|
|
def apply_rotary_pos_emb(self, x: np.ndarray, seq_dim: int = -2) -> np.ndarray: |
|
seq_len = x.shape[seq_dim] |
|
t = np.arange(seq_len, dtype=self.dtype) |
|
freqs = np.outer(t, self.rotary_freqs) |
|
cos = np.cos(freqs) |
|
sin = np.sin(freqs) |
|
x1 = x[..., 0::2] |
|
x2 = x[..., 1::2] |
|
x_rotated1 = x1 * cos - x2 * sin |
|
x_rotated2 = x1 * sin + x2 * cos |
|
x_rotated = np.zeros_like(x) |
|
x_rotated[..., 0::2] = x_rotated1 |
|
x_rotated[..., 1::2] = x_rotated2 |
|
return x_rotated |
|
|
|
def forward(self, seq_len: int) -> np.ndarray: |
|
if not self.use_rotary: |
|
return self.W[:seq_len][np.newaxis, :, :] |
|
return None |
|
|
|
def backward(self, seq_len: int, grad: np.ndarray): |
|
if not self.use_rotary: |
|
np.add.at(self.grad_W, np.arange(seq_len), np.sum(grad, axis=0)) |
|
|
|
class LayerNorm: |
|
def __init__(self, d_model: int, eps: float = EPS, rms_norm: bool = False, dtype=DEFAULT_DTYPE): |
|
self.d_model = d_model |
|
self.eps = eps |
|
self.rms_norm = rms_norm |
|
self.dtype = dtype |
|
if not rms_norm: |
|
self.gamma = np.ones((1, 1, d_model), dtype=dtype) |
|
self.beta = np.zeros((1, 1, d_model), dtype=dtype) |
|
self.grad_gamma = np.zeros_like(self.gamma) |
|
self.grad_beta = np.zeros_like(self.beta) |
|
else: |
|
self.weight = np.ones((1, 1, d_model), dtype=dtype) |
|
self.grad_weight = np.zeros_like(self.weight) |
|
self.x = None |
|
self.mean = None |
|
self.var = None |
|
self.x_norm = None |
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
self.x = x |
|
if self.rms_norm: |
|
rms = np.sqrt(np.mean(x**2, axis=-1, keepdims=True) + self.eps) |
|
self.x_norm = x / rms |
|
return self.weight * self.x_norm |
|
else: |
|
self.mean = np.mean(x, axis=-1, keepdims=True) |
|
self.var = np.var(x, axis=-1, keepdims=True) |
|
self.x_norm = (x - self.mean) / np.sqrt(self.var + self.eps) |
|
return self.gamma * self.x_norm + self.beta |
|
|
|
def backward(self, grad: np.ndarray) -> np.ndarray: |
|
if self.rms_norm: |
|
grad_x_norm = grad * self.weight |
|
x_norm2 = self.x_norm ** 2 |
|
d_rms = -np.sum(grad_x_norm * self.x_norm, axis=-1, keepdims=True) / np.sqrt(np.mean(x_norm2, axis=-1, keepdims=True) + self.eps) |
|
d_x = (grad_x_norm - self.x_norm * d_rms) / self.x_norm.shape[-1] |
|
self.grad_weight = np.sum(grad * self.x_norm, axis=(0, 1), keepdims=True) |
|
return d_x |
|
else: |
|
b, s, d = grad.shape |
|
self.grad_gamma = np.sum(grad * self.x_norm, axis=(0, 1), keepdims=True) |
|
self.grad_beta = np.sum(grad, axis=(0, 1), keepdims=True) |
|
dx_norm = grad * self.gamma |
|
var_eps = self.var + self.eps |
|
dx = (1. / np.sqrt(var_eps)) * (dx_norm - np.mean(dx_norm, axis=-1, keepdims=True) - |
|
self.x_norm * np.mean(dx_norm * self.x_norm, axis=-1, keepdims=True)) |
|
return dx |
|
|
|
class FeedForward: |
|
def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, dtype=DEFAULT_DTYPE): |
|
self.d_model = d_model |
|
self.d_ff = d_ff |
|
self.dropout = dropout |
|
self.dtype = dtype |
|
scale_in = 1.0 / np.sqrt(d_model) |
|
scale_out = 1.0 / np.sqrt(d_ff) |
|
self.W1 = np.random.normal(0, scale_in, (d_model, d_ff)).astype(dtype) |
|
self.b1 = np.zeros((1, 1, d_ff), dtype=dtype) |
|
self.W2 = np.random.normal(0, scale_out, (d_ff, d_model)).astype(dtype) |
|
self.b2 = np.zeros((1, 1, d_model), dtype=dtype) |
|
self.grad_W1 = np.zeros_like(self.W1) |
|
self.grad_b1 = np.zeros_like(self.b1) |
|
self.grad_W2 = np.zeros_like(self.W2) |
|
self.grad_b2 = np.zeros_like(self.b2) |
|
self.x = None |
|
self.hidden = None |
|
self.hidden_act = None |
|
self.dropout_mask1 = None |
|
self.dropout_mask2 = None |
|
|
|
def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray: |
|
self.x = x |
|
b, s, d = x.shape |
|
self.hidden = x @ self.W1 + self.b1 |
|
self.hidden_act = gelu(self.hidden) |
|
if training and self.dropout > 0: |
|
self.dropout_mask1 = (np.random.rand(*self.hidden_act.shape) > self.dropout) |
|
self.hidden_act = self.hidden_act * self.dropout_mask1 / (1 - self.dropout) |
|
else: |
|
self.dropout_mask1 = None |
|
out = self.hidden_act @ self.W2 + self.b2 |
|
if training and self.dropout > 0: |
|
self.dropout_mask2 = (np.random.rand(*out.shape) > self.dropout) |
|
out = out * self.dropout_mask2 / (1 - self.dropout) |
|
else: |
|
self.dropout_mask2 = None |
|
return out |
|
|
|
def backward(self, grad: np.ndarray) -> np.ndarray: |
|
b, s, d = grad.shape |
|
if self.dropout_mask2 is not None: |
|
grad = grad * self.dropout_mask2 |
|
self.grad_W2 = (self.hidden_act.reshape(-1, self.d_ff).T @ grad.reshape(-1, d)).reshape(self.d_ff, d) |
|
self.grad_b2 = np.sum(grad, axis=(0, 1), keepdims=True) |
|
dhidden_act = grad @ self.W2.T |
|
if self.dropout_mask1 is not None: |
|
dhidden_act = dhidden_act * self.dropout_mask1 |
|
dhidden = dhidden_act * gelu_grad(self.hidden) |
|
self.grad_W1 = (self.x.reshape(-1, self.d_model).T @ dhidden.reshape(-1, self.d_ff)).reshape(self.d_model, self.d_ff) |
|
self.grad_b1 = np.sum(dhidden, axis=(0, 1), keepdims=True) |
|
dx = dhidden @ self.W1.T |
|
return dx |
|
|
|
class MultiHeadSelfAttention: |
|
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1, use_rotary: bool = False, dtype=DEFAULT_DTYPE): |
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
self.dropout = dropout |
|
self.use_rotary = use_rotary |
|
self.dtype = dtype |
|
scale = 1.0 / np.sqrt(d_model) |
|
self.W_q = np.random.normal(0, scale, (d_model, d_model)).astype(dtype) |
|
self.W_k = np.random.normal(0, scale, (d_model, d_model)).astype(dtype) |
|
self.W_v = np.random.normal(0, scale, (d_model, d_model)).astype(dtype) |
|
self.W_o = np.random.normal(0, scale, (d_model, d_model)).astype(dtype) |
|
self.grad_W_q = np.zeros_like(self.W_q) |
|
self.grad_W_k = np.zeros_like(self.W_k) |
|
self.grad_W_v = np.zeros_like(self.W_v) |
|
self.grad_W_o = np.zeros_like(self.W_o) |
|
self.cache = {} |
|
self.dropout_mask = None |
|
|
|
def split_heads(self, x: np.ndarray) -> np.ndarray: |
|
b, s, d = x.shape |
|
x = x.reshape(b, s, self.num_heads, self.head_dim) |
|
return np.transpose(x, (0, 2, 1, 3)) |
|
|
|
def combine_heads(self, x: np.ndarray) -> np.ndarray: |
|
x = np.transpose(x, (0, 2, 1, 3)) |
|
b, s, h, hd = x.shape |
|
return x.reshape(b, s, h * hd) |
|
|
|
def causal_mask(self, seq_len: int) -> np.ndarray: |
|
return np.tril(np.ones((seq_len, seq_len), dtype=bool)) |
|
|
|
def apply_rotary_embeddings(self, q: np.ndarray, k: np.ndarray, seq_dim: int = -2) -> Tuple[np.ndarray, np.ndarray]: |
|
q_rotated = PositionalEmbedding.apply_rotary_pos_emb(q, seq_dim=seq_dim) |
|
k_rotated = PositionalEmbedding.apply_rotary_pos_emb(k, seq_dim=seq_dim) |
|
return q_rotated, k_rotated |
|
|
|
def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray: |
|
b, s, d = x.shape |
|
Q = x @ self.W_q |
|
K = x @ self.W_k |
|
V = x @ self.W_v |
|
Qh = self.split_heads(Q) |
|
Kh = self.split_heads(K) |
|
Vh = self.split_heads(V) |
|
if self.use_rotary: |
|
Qh, Kh = self.apply_rotary_embeddings(Qh, Kh) |
|
dk = self.head_dim |
|
scores = Qh @ np.swapaxes(Kh, -1, -2) / np.sqrt(dk) |
|
mask = self.causal_mask(s)[np.newaxis, np.newaxis, :, :] |
|
scores = np.where(mask, scores, -np.inf) |
|
attn = softmax(scores, axis=-1) |
|
if training and self.dropout > 0: |
|
self.dropout_mask = (np.random.rand(*attn.shape) > self.dropout) |
|
attn = attn * self.dropout_mask / (1 - self.dropout) |
|
else: |
|
self.dropout_mask = None |
|
attn_out = attn @ Vh |
|
out = self.combine_heads(attn_out) @ self.W_o |
|
self.cache = { |
|
'x': x, 'Q': Q, 'K': K, 'V': V, |
|
'Qh': Qh, 'Kh': Kh, 'Vh': Vh, |
|
'scores': scores, 'attn': attn, 'attn_out': attn_out, |
|
'mask': mask |
|
} |
|
return out |
|
|
|
def backward(self, grad_out: np.ndarray) -> np.ndarray: |
|
x = self.cache['x'] |
|
Qh = self.cache['Qh'] |
|
Kh = self.cache['Kh'] |
|
Vh = self.cache['Vh'] |
|
attn = self.cache['attn'] |
|
attn_out = self.cache['attn_out'] |
|
mask = self.cache['mask'] |
|
b, s, d = grad_out.shape |
|
dk = self.head_dim |
|
if self.dropout_mask is not None: |
|
attn = attn * self.dropout_mask |
|
out_concat = self.combine_heads(attn_out) |
|
self.grad_W_o = out_concat.reshape(-1, d).T @ grad_out.reshape(-1, d) |
|
d_out_concat = grad_out @ self.W_o.T |
|
d_attn_out = d_out_concat.reshape(b, s, self.num_heads, self.head_dim) |
|
d_attn_out = np.transpose(d_attn_out, (0, 2, 1, 3)) |
|
dVh = np.matmul(np.swapaxes(attn, -1, -2), d_attn_out) |
|
dattn = np.matmul(d_attn_out, np.swapaxes(Vh, -1, -2)) |
|
sft = attn |
|
sum_d = np.sum(dattn * sft, axis=-1, keepdims=True) |
|
dscores = sft * (dattn - sum_d) |
|
dscores = np.where(mask, dscores, 0.0) |
|
dQh = np.matmul(dscores, Kh) / np.sqrt(dk) |
|
dKh = np.matmul(np.swapaxes(dscores, -1, -2), Qh) / np.sqrt(dk) |
|
dQ = np.transpose(dQh, (0, 2, 1, 3)).reshape(b, s, d) |
|
dK = np.transpose(dKh, (0, 2, 1, 3)).reshape(b, s, d) |
|
dV = np.transpose(dVh, (0, 2, 1, 3)).reshape(b, s, d) |
|
self.grad_W_q = x.reshape(-1, d).T @ dQ.reshape(-1, d) |
|
self.grad_W_k = x.reshape(-1, d).T @ dK.reshape(-1, d) |
|
self.grad_W_v = x.reshape(-1, d).T @ dV.reshape(-1, d) |
|
dx_q = dQ @ self.W_q.T |
|
dx_k = dK @ self.W_k.T |
|
dx_v = dV @ self.W_v.T |
|
dx = dx_q + dx_k + dx_v |
|
return dx |
|
|
|
class DecoderBlock: |
|
def __init__(self, d_model: int, num_heads: int, d_ff: int, dropout: float = 0.1, |
|
layer_scale: bool = False, layer_scale_init: float = 1e-4, use_rotary: bool = False): |
|
self.mha = MultiHeadSelfAttention(d_model, num_heads, dropout, use_rotary) |
|
self.ln1 = LayerNorm(d_model, rms_norm=False) |
|
self.ff = FeedForward(d_model, d_ff, dropout) |
|
self.ln2 = LayerNorm(d_model, rms_norm=False) |
|
self.dropout = dropout |
|
self.layer_scale = layer_scale |
|
self.layer_scale_init = layer_scale_init |
|
if layer_scale: |
|
self.gamma1 = np.ones((1, 1, d_model)) * layer_scale_init |
|
self.gamma2 = np.ones((1, 1, d_model)) * layer_scale_init |
|
|
|
def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray: |
|
attn_out = self.mha.forward(x, training) |
|
if self.layer_scale: |
|
attn_out = attn_out * self.gamma1 |
|
x = x + attn_out |
|
x = self.ln1.forward(x) |
|
ff_out = self.ff.forward(x, training) |
|
if self.layer_scale: |
|
ff_out = ff_out * self.gamma2 |
|
x = x + ff_out |
|
x = self.ln2.forward(x) |
|
return x |
|
|
|
def backward(self, grad: np.ndarray) -> np.ndarray: |
|
d_ln2 = self.ln2.backward(grad) |
|
d_ff = self.ff.backward(d_ln2) |
|
if self.layer_scale: |
|
d_ff = d_ff * self.gamma2 |
|
d_res = d_ln2 + d_ff |
|
d_ln1 = self.ln1.backward(d_res) |
|
d_mha = self.mha.backward(d_ln1) |
|
if self.layer_scale: |
|
d_mha = d_mha * self.gamma1 |
|
dx = d_mha + d_ln1 |
|
return dx |
|
|
|
class GPT: |
|
def __init__(self, vocab_size: int, max_len: int = 512, d_model: int = 768, num_heads: int = 12, |
|
d_ff: int = 3072, num_layers: int = 12, dropout: float = 0.1, |
|
use_rotary: bool = False, rms_norm: bool = False, layer_scale: bool = False, |
|
dtype=DEFAULT_DTYPE): |
|
self.vocab_size = vocab_size |
|
self.max_len = max_len |
|
self.d_model = d_model |
|
self.dtype = dtype |
|
self.embed = Embedding(vocab_size, d_model, dtype) |
|
self.pos_embed = PositionalEmbedding(max_len, d_model, use_rotary, dtype) |
|
self.layers = [ |
|
DecoderBlock(d_model, num_heads, d_ff, dropout, layer_scale, use_rotary=use_rotary) |
|
for _ in range(num_layers) |
|
] |
|
self.ln_f = LayerNorm(d_model, rms_norm=rms_norm, dtype=dtype) |
|
self.dropout = dropout |
|
self.W_out = np.random.normal(0, 1.0 / np.sqrt(d_model), (d_model, vocab_size)).astype(dtype) |
|
self.grad_W_out = np.zeros_like(self.W_out) |
|
self.opt_states = {} |
|
self.lr = 0.0 |
|
self.beta1 = 0.0 |
|
self.beta2 = 0.0 |
|
self.eps = 0.0 |
|
self.opt_step = 0 |
|
self.training = True |
|
|
|
def parameters(self) -> List[Tuple[str, np.ndarray]]: |
|
params = [] |
|
params.append(('embed.W', self.embed.W)) |
|
if not self.pos_embed.use_rotary: |
|
params.append(('pos.W', self.pos_embed.W)) |
|
for i, layer in enumerate(self.layers): |
|
params.append((f'layer{i}.mha.W_q', layer.mha.W_q)) |
|
params.append((f'layer{i}.mha.W_k', layer.mha.W_k)) |
|
params.append((f'layer{i}.mha.W_v', layer.mha.W_v)) |
|
params.append((f'layer{i}.mha.W_o', layer.mha.W_o)) |
|
params.append((f'layer{i}.ln1.gamma', layer.ln1.gamma)) |
|
params.append((f'layer{i}.ln1.beta', layer.ln1.beta)) |
|
params.append((f'layer{i}.ff.W1', layer.ff.W1)) |
|
params.append((f'layer{i}.ff.b1', layer.ff.b1)) |
|
params.append((f'layer{i}.ff.W2', layer.ff.W2)) |
|
params.append((f'layer{i}.ff.b2', layer.ff.b2)) |
|
params.append((f'layer{i}.ln2.gamma', layer.ln2.gamma)) |
|
params.append((f'layer{i}.ln2.beta', layer.ln2.beta)) |
|
if layer.layer_scale: |
|
params.append((f'layer{i}.gamma1', layer.gamma1)) |
|
params.append((f'layer{i}.gamma2', layer.gamma2)) |
|
if not self.ln_f.rms_norm: |
|
params.append(('ln_f.gamma', self.ln_f.gamma)) |
|
params.append(('ln_f.beta', self.ln_f.beta)) |
|
else: |
|
params.append(('ln_f.weight', self.ln_f.weight)) |
|
params.append(('W_out', self.W_out)) |
|
return params |
|
|
|
def zero_grads(self): |
|
self.embed.grad_W.fill(0.0) |
|
if not self.pos_embed.use_rotary: |
|
self.pos_embed.grad_W.fill(0.0) |
|
for layer in self.layers: |
|
layer.mha.grad_W_q.fill(0.0) |
|
layer.mha.grad_W_k.fill(0.0) |
|
layer.mha.grad_W_v.fill(0.0) |
|
layer.mha.grad_W_o.fill(0.0) |
|
layer.ln1.grad_gamma.fill(0.0) |
|
layer.ln1.grad_beta.fill(0.0) |
|
layer.ff.grad_W1.fill(0.0) |
|
layer.ff.grad_b1.fill(0.0) |
|
layer.ff.grad_W2.fill(0.0) |
|
layer.ff.grad_b2.fill(0.0) |
|
layer.ln2.grad_gamma.fill(0.0) |
|
layer.ln2.grad_beta.fill(0.0) |
|
if not self.ln_f.rms_norm: |
|
self.ln_f.grad_gamma.fill(0.0) |
|
self.ln_f.grad_beta.fill(0.0) |
|
else: |
|
self.ln_f.grad_weight.fill(0.0) |
|
self.grad_W_out.fill(0.0) |
|
|
|
def forward(self, idx: np.ndarray, training: bool = True) -> np.ndarray: |
|
self.training = training |
|
b, s = idx.shape |
|
x = self.embed.forward(idx) |
|
if not self.pos_embed.use_rotary: |
|
x = x + self.pos_embed.forward(s) |
|
for layer in self.layers: |
|
x = layer.forward(x, training) |
|
x = self.ln_f.forward(x) |
|
if training and self.dropout > 0: |
|
dropout_mask = (np.random.rand(*x.shape) > self.dropout) |
|
x = x * dropout_mask / (1 - self.dropout) |
|
logits = x.reshape(-1, self.d_model) @ self.W_out |
|
logits = logits.reshape(b, s, -1) |
|
self._cache = {'x': x, 'idx': idx} |
|
return logits |
|
|
|
def loss_and_backward(self, idx_in: np.ndarray, idx_target: np.ndarray, |
|
grad_clip: float = 1.0) -> float: |
|
b, s = idx_in.shape |
|
logits = self.forward(idx_in, training=True) |
|
vocab = logits.shape[-1] |
|
logits_flat = logits.reshape(-1, vocab) |
|
targets_flat = idx_target.reshape(-1) |
|
probs = softmax(logits_flat, axis=1) |
|
log_probs = np.log(np.clip(probs, 1e-12, 1.0)) |
|
loss = -np.mean(log_probs[np.arange(len(targets_flat)), targets_flat]) |
|
grad_logits = probs.copy() |
|
grad_logits[np.arange(grad_logits.shape[0]), targets_flat] -= 1 |
|
grad_logits = grad_logits.reshape(b, s, vocab) / (b * s) |
|
x = self._cache['x'] |
|
self.grad_W_out = x.reshape(-1, self.d_model).T @ grad_logits.reshape(-1, vocab) |
|
dx = grad_logits.reshape(-1, vocab) @ self.W_out.T |
|
dx = dx.reshape(b, s, self.d_model) |
|
d_ln = self.ln_f.backward(dx) |
|
grad = d_ln |
|
for layer in reversed(self.layers): |
|
grad = layer.backward(grad) |
|
idx = self._cache['idx'] |
|
self.embed.backward(idx, grad) |
|
if not self.pos_embed.use_rotary: |
|
self.pos_embed.backward(s, grad) |
|
if grad_clip > 0: |
|
total_norm = 0.0 |
|
for _, param in self.parameters(): |
|
if param.grad is not None: |
|
param_norm = np.linalg.norm(param.grad) |
|
total_norm += param_norm ** 2 |
|
total_norm = np.sqrt(total_norm) |
|
clip_coef = min(grad_clip / (total_norm + EPS), 1.0) |
|
if clip_coef < 1: |
|
for _, param in self.parameters(): |
|
if param.grad is not None: |
|
param.grad *= clip_coef |
|
return loss |
|
|
|
def init_optimizer(self, lr: float = 6e-4, betas=(0.9, 0.95), eps=1e-8, |
|
weight_decay: float = 0.1, warmup_steps: int = 2000): |
|
self.lr = lr |
|
self.beta1 = betas[0] |
|
self.beta2 = betas[1] |
|
self.eps = eps |
|
self.weight_decay = weight_decay |
|
self.warmup_steps = warmup_steps |
|
self.opt_step = 0 |
|
self.opt_states = {} |
|
for name, param in self.parameters(): |
|
self.opt_states[name] = { |
|
'm': np.zeros_like(param), |
|
'v': np.zeros_like(param) |
|
} |
|
|
|
def step_optimizer(self, current_step: Optional[int] = None): |
|
if current_step is not None: |
|
self.opt_step = current_step |
|
self.opt_step += 1 |
|
if self.warmup_steps > 0: |
|
lr = self.lr * min(self.opt_step ** -0.5, self.opt_step * self.warmup_steps ** -1.5) |
|
else: |
|
lr = self.lr |
|
def update(name: str, param: np.ndarray, grad: np.ndarray): |
|
if 'W_' in name and self.weight_decay > 0: |
|
grad = grad + self.weight_decay * param |
|
state = self.opt_states[name] |
|
state['m'] = self.beta1 * state['m'] + (1 - self.beta1) * grad |
|
state['v'] = self.beta2 * state['v'] + (1 - self.beta2) * (grad ** 2) |
|
m_hat = state['m'] / (1 - self.beta1 ** self.opt_step) |
|
v_hat = state['v'] / (1 - self.beta2 ** self.opt_step) |
|
param -= lr * m_hat / (np.sqrt(v_hat) + self.eps) |
|
for name, param in self.parameters(): |
|
if name in ['embed.W', 'pos.W', 'W_out'] or 'W_' in name: |
|
grad = getattr(self, f"grad_{name.split('.')[0]}") |
|
else: |
|
grad = getattr(self, f"grad_{name.replace('.', '_')}") |
|
update(name, param, grad) |
|
|
|
def enable_gradient_checkpointing(self): |
|
warnings.warn("Gradient checkpointing is not implemented in this NumPy version", RuntimeWarning) |
|
|
|
def convert_to_rms_norm(self): |
|
self.ln_f = LayerNorm(self.d_model, rms_norm=True, dtype=self.dtype) |
|
for layer in self.layers: |
|
layer.ln1 = LayerNorm(self.d_model, rms_norm=True, dtype=self.dtype) |
|
layer.ln2 = LayerNorm(self.d_model, rms_norm=True, dtype=self.dtype) |
|
|
|
def save(self, path: str, include_optimizer: bool = False): |
|
data = { |
|
'config': { |
|
'vocab_size': self.vocab_size, |
|
'max_len': self.max_len, |
|
'd_model': self.d_model, |
|
'num_heads': self.layers[0].mha.num_heads, |
|
'd_ff': self.layers[0].ff.d_ff, |
|
'num_layers': len(self.layers), |
|
'dropout': self.dropout, |
|
'use_rotary': self.pos_embed.use_rotary, |
|
'rms_norm': self.ln_f.rms_norm, |
|
'layer_scale': any(layer.layer_scale for layer in self.layers) |
|
}, |
|
'embed.W': self.embed.W, |
|
'pos.W': self.pos_embed.W if not self.pos_embed.use_rotary else None, |
|
'layers': [], |
|
'ln_f.gamma': self.ln_f.gamma if not self.ln_f.rms_norm else None, |
|
'ln_f.beta': self.ln_f.beta if not self.ln_f.rms_norm else None, |
|
'ln_f.weight': self.ln_f.weight if self.ln_f.rms_norm else None, |
|
'W_out': self.W_out |
|
} |
|
for layer in self.layers: |
|
layer_data = { |
|
'mha.W_q': layer.mha.W_q, |
|
'mha.W_k': layer.mha.W_k, |
|
'mha.W_v': layer.mha.W_v, |
|
'mha.W_o': layer.mha.W_o, |
|
'ff.W1': layer.ff.W1, |
|
'ff.b1': layer.ff.b1, |
|
'ff.W2': layer.ff.W2, |
|
'ff.b2': layer.ff.b2, |
|
'ln1.gamma': layer.ln1.gamma, |
|
'ln1.beta': layer.ln1.beta, |
|
'ln2.gamma': layer.ln2.gamma, |
|
'ln2.beta': layer.ln2.beta |
|
} |
|
if layer.layer_scale: |
|
layer_data['gamma1'] = layer.gamma1 |
|
layer_data['gamma2'] = layer.gamma2 |
|
data['layers'].append(layer_data) |
|
if include_optimizer and self.opt_states: |
|
data['optimizer'] = { |
|
'lr': self.lr, |
|
'beta1': self.beta1, |
|
'beta2': self.beta2, |
|
'eps': self.eps, |
|
'weight_decay': self.weight_decay, |
|
'warmup_steps': self.warmup_steps, |
|
'opt_step': self.opt_step, |
|
'states': {k: {'m': v['m'], 'v': v['v']} for k, v in self.opt_states.items()} |
|
} |
|
os.makedirs(os.path.dirname(os.path.abspath(path)), exist_ok=True) |
|
with open(path, 'wb') as f: |
|
pickle.dump(data, f) |
|
|
|
def load(self, path: str, strict: bool = True): |
|
with open(path, 'rb') as f: |
|
data = pickle.load(f) |
|
self.embed.W = data['embed.W'] |
|
if not self.pos_embed.use_rotary and data['pos.W'] is not None: |
|
self.pos_embed.W = data['pos.W'] |
|
for layer, ld in zip(self.layers, data['layers']): |
|
layer.mha.W_q = ld['mha.W_q'] |
|
layer.mha.W_k = ld['mha.W_k'] |
|
layer.mha.W_v = ld['mha.W_v'] |
|
layer.mha.W_o = ld['mha.W_o'] |
|
layer.ff.W1 = ld['ff.W1'] |
|
layer.ff.b1 = ld['ff.b1'] |
|
layer.ff.W2 = ld['ff.W2'] |
|
layer.ff.b2 = ld['ff.b2'] |
|
layer.ln1.gamma = ld['ln1.gamma'] |
|
layer.ln1.beta = ld['ln1.beta'] |
|
layer.ln2.gamma = ld['ln2.gamma'] |
|
layer.ln2.beta = ld['ln2.beta'] |
|
if hasattr(layer, 'gamma1') and 'gamma1' in ld: |
|
layer.gamma1 = ld['gamma1'] |
|
if hasattr(layer, 'gamma2') and 'gamma2' in ld: |
|
layer.gamma2 = ld['gamma2'] |
|
if not self.ln_f.rms_norm: |
|
self.ln_f.gamma = data['ln_f.gamma'] |
|
self.ln_f.beta = data['ln_f.beta'] |
|
else: |
|
self.ln_f.weight = data['ln_f.weight'] |
|
self.W_out = data['W_out'] |
|
if 'optimizer' in data and self.opt_states: |
|
opt_data = data['optimizer'] |
|
self.lr = opt_data['lr'] |
|
self.beta1 = opt_data['beta1'] |
|
self.beta2 = opt_data['beta2'] |
|
self.eps = opt_data['eps'] |
|
self.weight_decay = opt_data.get('weight_decay', 0.1) |
|
self.warmup_steps = opt_data.get('warmup_steps', 2000) |
|
self.opt_step = opt_data['opt_step'] |
|
for name, state in opt_data['states'].items(): |
|
if name in self.opt_states: |
|
self.opt_states[name]['m'] = state['m'] |
|
self.opt_states[name]['v'] = state['v'] |
|
|
|
def generate(self, idx_start: List[int], max_new_tokens: int = 50, |
|
temperature: float = 1.0, top_k: Optional[int] = None, |
|
top_p: Optional[float] = None, do_sample: bool = True) -> List[int]: |
|
idx = list(idx_start) |
|
for _ in range(max_new_tokens): |
|
input_ids = np.array([idx[-self.max_len:]], dtype=np.int32) |
|
logits = self.forward(input_ids, training=False) |
|
next_logits = logits[0, -1] / max(temperature, 1e-8) |
|
if top_k is not None and top_k > 0: |
|
top_k = min(top_k, len(next_logits)) |
|
top_k_idx = np.argpartition(next_logits, -top_k)[-top_k:] |
|
top_k_logits = next_logits[top_k_idx] |
|
if top_p is not None and top_p < 1.0: |
|
sorted_idx = np.argsort(top_k_logits)[::-1] |
|
sorted_logits = top_k_logits[sorted_idx] |
|
cumulative_probs = np.cumsum(softmax(sorted_logits)) |
|
cutoff_idx = np.where(cumulative_probs > top_p)[0][0] |
|
top_p_idx = top_k_idx[sorted_idx[:cutoff_idx + 1]] |
|
top_p_logits = next_logits[top_p_idx] |
|
probs = softmax(top_p_logits) |
|
next_id = np.random.choice(top_p_idx, p=probs) if do_sample else top_p_idx[np.argmax(top_p_logits)] |
|
else: |
|
probs = softmax(top_k_logits) |
|
next_id = np.random.choice(top_k_idx, p=probs) if do_sample else top_k_idx[np.argmax(top_k_logits)] |
|
else: |
|
if top_p is not None and top_p < 1.0: |
|
sorted_idx = np.argsort(next_logits)[::-1] |
|
sorted_logits = next_logits[sorted_idx] |
|
cumulative_probs = np.cumsum(softmax(sorted_logits)) |
|
cutoff_idx = np.where(cumulative_probs > top_p)[0][0] |
|
top_p_idx = sorted_idx[:cutoff_idx + 1] |
|
top_p_logits = next_logits[top_p_idx] |
|
probs = softmax(top_p_logits) |
|
next_id = np.random.choice(top_p_idx, p=probs) if do_sample else top_p_idx[np.argmax(top_p_logits)] |
|
else: |
|
probs = softmax(next_logits) |
|
next_id = np.random.choice(len(probs), p=probs) if do_sample else np.argmax(probs) |
|
idx.append(int(next_id)) |
|
return idx |
|
|
|
def evaluate(self, val_data: np.ndarray, seq_len: int, batch_size: int, |
|
tokenizer: Any) -> Tuple[float, float]: |
|
total_loss = 0.0 |
|
total_tokens = 0 |
|
n_batches = 0 |
|
for xb, yb in get_batches_from_text(val_data, seq_len, batch_size, tokenizer): |
|
original_dropout = self.dropout |
|
self.dropout = 0.0 |
|
b, s = xb.shape |
|
logits = self.forward(xb, training=False) |
|
vocab = logits.shape[-1] |
|
logits_flat = logits.reshape(-1, vocab) |
|
targets_flat = yb.reshape(-1) |
|
probs = softmax(logits_flat, axis=1) |
|
log_probs = np.log(np.clip(probs, 1e-12, 1.0)) |
|
loss = -np.mean(log_probs[np.arange(len(targets_flat)), targets_flat]) |
|
total_loss += loss * len(targets_flat) |
|
total_tokens += len(targets_flat) |
|
n_batches += 1 |
|
self.dropout = original_dropout |
|
avg_loss = total_loss / total_tokens |
|
perplexity = np.exp(avg_loss) |
|
return avg_loss, perplexity |
|
|
|
class Trainer: |
|
def __init__(self, model: GPT, tokenizer: Any, train_data: str, |
|
val_data: Optional[str] = None, seq_len: int = 1024, |
|
batch_size: int = 8, grad_accum_steps: int = 1): |
|
self.model = model |
|
self.tokenizer = tokenizer |
|
self.train_data = train_data |
|
self.val_data = val_data |
|
self.seq_len = seq_len |
|
self.batch_size = batch_size |
|
self.grad_accum_steps = grad_accum_steps |
|
self.history = {'train_loss': [], 'val_loss': [], 'perplexity': [], 'lr': []} |
|
self.best_val_loss = float('inf') |
|
self.patience_counter = 0 |
|
|
|
def train(self, epochs: int = 10, lr: float = 3e-4, weight_decay: float = 0.1, |
|
warmup_steps: int = 2000, grad_clip: float = 1.0, |
|
val_interval: int = 1, early_stopping_patience: int = 5, |
|
checkpoint_dir: str = 'checkpoints', save_best: bool = True): |
|
os.makedirs(checkpoint_dir, exist_ok=True) |
|
self.model.init_optimizer( |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
warmup_steps=warmup_steps |
|
) |
|
total_steps = 0 |
|
start_time = time.time() |
|
for epoch in range(1, epochs + 1): |
|
print(f"\nEpoch {epoch}/{epochs}") |
|
epoch_start = time.time() |
|
total_loss = 0.0 |
|
n_batches = 0 |
|
total_steps += len(self.train_data) // (self.seq_len * self.batch_size) |
|
for i, (xb, yb) in enumerate(get_batches_from_text( |
|
self.train_data, self.seq_len, self.batch_size, self.tokenizer)): |
|
loss = self.model.loss_and_backward(xb, yb, grad_clip) |
|
total_loss += loss |
|
n_batches += 1 |
|
if (i + 1) % self.grad_accum_steps == 0 or (i + 1) == n_batches: |
|
self.model.step_optimizer(total_steps) |
|
self.model.zero_grads() |
|
if i % 10 == 0: |
|
current_lr = lr * min(total_steps ** -0.5, total_steps * warmup_steps ** -1.5) if warmup_steps > 0 else lr |
|
print(f'Step {i+1}/{n_batches}, Loss: {loss:.4f}, LR: {current_lr:.2e}', end='\r') |
|
avg_loss = total_loss / max(1, n_batches) |
|
self.history['train_loss'].append(avg_loss) |
|
val_loss = float('inf') |
|
perplexity = float('inf') |
|
if self.val_data and epoch % val_interval == 0: |
|
val_loss, perplexity = self.model.evaluate( |
|
self.val_data, self.seq_len, self.batch_size, self.tokenizer |
|
) |
|
self.history['val_loss'].append(val_loss) |
|
self.history['perplexity'].append(perplexity) |
|
if save_best and val_loss < self.best_val_loss: |
|
self.best_val_loss = val_loss |
|
best_path = os.path.join(checkpoint_dir, 'best_model.pkl') |
|
self.model.save(best_path, include_optimizer=True) |
|
print(f"\n[INFO] Best model saved with validation loss: {val_loss:.4f}") |
|
self.patience_counter = 0 |
|
else: |
|
self.patience_counter += 1 |
|
epoch_time = time.time() - epoch_start |
|
print(f"\nEpoch {epoch} completed in {epoch_time:.2f}s | " |
|
f"Train Loss: {avg_loss:.4f} | " |
|
f"Val Loss: {val_loss:.4f} | " |
|
f"Perplexity: {perplexity:.2f}") |
|
start_prompt = 'دوست ' |
|
start_ids = [self.tokenizer.w2i.get(c, self.tokenizer.w2i['<unk>']) for c in start_prompt] |
|
gen = self.model.generate(start_ids, max_new_tokens=100, temperature=0.8, top_k=50, top_p=0.9) |
|
print('Sample:', self.tokenizer.decode(np.array(gen))) |
|
if epoch % 5 == 0: |
|
ckpt_path = os.path.join(checkpoint_dir, f'model_epoch_{epoch}.pkl') |
|
self.model.save(ckpt_path) |
|
print(f"[INFO] Checkpoint saved to {ckpt_path}") |
|
if early_stopping_patience > 0 and self.patience_counter >= early_stopping_patience: |
|
print(f"\n[INFO] Early stopping triggered after {epoch} epochs") |
|
break |
|
total_time = time.time() - start_time |
|
print(f"\nTraining completed in {total_time/60:.2f} minutes") |
|
return self.history |
|
|
|
if __name__ == '__main__': |
|
seq_len = 128 |
|
batch_size = 8 |
|
epochs = 50 |
|
lr = 6e-4 |
|
try: |
|
with open('sample_text.txt', 'r', encoding='utf-8') as f: |
|
sample_text = f.read() |
|
except: |
|
sample_text = """ |
|
دوست دارم برنامهنویسی کنم. این یک متن نمونه است برای آموزش مدل GPT کوچک. |
|
مدل میتواند کاراکترها را یاد بگیرد و متن تولید کند. |
|
هوش مصنوعی یکی از حوزههای پررونق در دنیای امروز است. |
|
مدلهای زبانی بزرگ قادر به انجام کارهای شگفتانگیزی هستند. |
|
در این مثال ساده، ما یک مدل GPT کوچک را پیادهسازی میکنیم. |
|
""" |
|
train_ratio = 0.9 |
|
split_idx = int(len(sample_text) * train_ratio) |
|
train_text = sample_text[:split_idx] |
|
val_text = sample_text[split_idx:] |
|
print("Building tokenizer...") |
|
tok = BPETokenizer() |
|
tok.build_from_text([train_text], vocab_size=500) |
|
vocab_size = len(tok.vocab) |
|
print(f'Vocabulary size: {vocab_size}') |
|
print("Building model...") |
|
model = GPT( |
|
vocab_size=vocab_size, |
|
max_len=seq_len, |
|
d_model=256, |
|
num_heads=8, |
|
d_ff=1024, |
|
num_layers=6, |
|
dropout=0.1, |
|
use_rotary=False, |
|
rms_norm=True, |
|
layer_scale=True |
|
) |
|
print("\nStarting training...") |
|
trainer = Trainer( |
|
model=model, |
|
tokenizer=tok, |
|
train_data=train_text, |
|
val_data=val_text, |
|
seq_len=seq_len, |
|
batch_size=batch_size |
|
) |
|
history = trainer.train( |
|
epochs=epochs, |
|
lr=lr, |
|
weight_decay=0.1, |
|
warmup_steps=1000, |
|
grad_clip=1.0, |
|
val_interval=1, |
|
early_stopping_patience=10, |
|
checkpoint_dir='checkpoints' |
|
) |
|
model.save('gpt_final.pkl') |
|
print('Final model saved -> gpt_final.pkl') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
LICENSE: |
|
|
|
Copyright 2025 ysnrfd |
|
|
|
Timestamp: 2025-08-12 |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
of this software and associated documentation files (the "Software"), to use, |
|
copy, modify, and distribute the Software, subject to the following conditions: |
|
|
|
1. The copyright notice, this permission notice, and all attribution information |
|
regarding the original author (ysnrfd) must be preserved in their entirety |
|
and must not be removed, altered, or obscured in any copies or derivative works. |
|
|
|
2. Any modifications or derivative works must be clearly documented in a "CHANGELOG" or |
|
"NOTICE" file included with the Software. This documentation must include a detailed |
|
description of the changes made, the date of the modification, and the identity of |
|
the modifier. |
|
|
|
3. The Software is provided "as is", without warranty of any kind, express or implied. |
|
The author shall not be liable for any damages arising from use of the Software. |
|
|
|
4. Any attempt to remove or alter the original attribution or copyright information |
|
constitutes a violation of this license and may result in legal action. |
|
|
|
""" |
|
|