Dataset Viewer
Auto-converted to Parquet
messages
listlengths
2
2
ground_truth
listlengths
10
10
dataset
stringclasses
1 value
id
stringclasses
8 values
difficulty
int64
1
1
timestamps
listlengths
10
10
scene_config
dict
tolerance
float64
50
50
prompt_setting
stringclasses
1 value
[ { "content": "## Polygon Dynamics Prediction (Function API)\nIn this task, you will implement a single function predict_position(t) that computes the 2D positions of all balls at an arbitrary future time t under idealized mechanics. The function parses the scene configuration (containers, balls, and physics/meta), reconstructs the motions, detects and handles boundary collisions with finite-size treatment, and returns a list where each element is the [x, y] position (rounded to 2 decimals) of a ball at time t. Each evaluation of t must be computed directly from initial conditions and scene mechanics with no hidden state or accumulation across calls. Rendering, animation, and explanatory text are out of scope; prefer closed-form reasoning and avoid coarse time-stepping except where narrowly required for collision resolution.\n\n### Mechanics (General)\n- Kinematics: Use closed-form equations under constant acceleration: x(t)=x0+vx0*t+0.5*ax*t^2, y(t)=y0+vy0*t+0.5*ay*t^2.\n- Collisions: Perfectly elastic. Reflect velocity using v' = v - 2·dot(v, n̂)·n̂, where n̂ is the inward unit normal at the contact.\n- Finite size: Account for ball radii using an inward offset of the container by the radius (Minkowski shrink) when testing contact/flight.\n- Geometry: Irregular convex polygons (if present) are simple (non self-intersecting). Ball finite size must be respected in all interactions.\n- Frames and units: Origin at top-left; +x right, +y down. Positions in meters; time in seconds; angles in radians; velocities in m/s; accelerations in m/s^2.\n\n### Constraints\n- Implement only predict_position(t); no other entry points will be called.\n- No global variables; no variables defined outside the function.\n- Do not import external libraries; do not perform I/O; do not print; do not use randomness.\n- Numerical output must be round(value, 2); normalize -0.0 to 0.0.\n\n### Verification and output contract\n- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].\n- Each call must be computed independently (no state carry-over between calls).\n\n### Debugging tips\n- Inputs and units: verify required fields exist; check meters/seconds/radians; confirm radius semantics match the scene conventions.\n- Collision geometry: confirm inward normals; validate a single reflection against an axis-aligned edge (e.g., vertical wall) recovers the expected mirrored velocity.\n- Finite-size handling: test that shrinking the container by radius prevents center from penetrating walls; compare against a point-particle control.\n- Timestamp independence: evaluate t directly from initial conditions, not from prior calls; guard against hidden state.\n- Progressive validation: start from simplest scenes (one ball, static container), then enable one effect at a time (gravity, rotation, translation) to isolate failures.\n", "role": "user" }, { "content": "### Scene description\n#### Containers\n- Container 1: regular polygon with 6 sides, diameter 381.00m, center at (275, 275); initial orientation 0.000 rad\n\n#### Objects\n- Ball 1: regular polygon (4 sides), radius 25m, initial position (275, 215), initial velocity (17, 117) m/s\n\n### Physics\n- no effective gravity (treated as zero).\n\n### Dynamics\n- No additional time-varying mechanisms.\n\n### Conventions for this scene\n- Angle baseline: initial orientation 0.000 rad points to the first vertex along +X.\n- Polygon vertices (if provided) are CCW and form a simple convex polygon.\n- Radius semantics: for circles and regular polygons, 'radius' denotes circumradius (meters).\n- Collision normal: use the inward unit normal of container walls for reflections.\n- Finite-size handling: treat the container as offset inward by the ball radius (Minkowski shrink).\n\n### Task\n- Number of balls: 1\n- Your task is to WRITE PYTHON CODE (do not output numeric answers directly)\n- Define predict_position(t) returning a list of length n_balls; each element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)\n\n### Output\n- Required format: function predict_position(t: float) -> [[x1,y1],[x2,y2],...]; coordinates as 2-decimal floats", "role": "user" } ]
[ "assert check_distance(predict_position(0.61), [[285.4, 286.43]]) <= 50.0", "assert check_distance(predict_position(0.97), [[291.53, 328.55]]) <= 50.0", "assert check_distance(predict_position(0.97), [[291.53, 328.55]]) <= 50.0", "assert check_distance(predict_position(1.03), [[292.55, 335.57]]) <= 50.0", "assert check_distance(predict_position(1.07), [[293.23, 340.25]]) <= 50.0", "assert check_distance(predict_position(2.13), [[311.28, 365.64]]) <= 50.0", "assert check_distance(predict_position(3.04), [[326.77, 259.23]]) <= 50.0", "assert check_distance(predict_position(3.14), [[328.47, 247.53]]) <= 50.0", "assert check_distance(predict_position(3.48), [[334.26, 207.75]]) <= 50.0", "assert check_distance(predict_position(3.54), [[335.28, 200.73]]) <= 50.0" ]
polygon_dynamics_2d
B_1_8
1
[ 0.61, 0.97, 0.97, 1.03, 1.07, 2.13, 3.04, 3.14, 3.48, 3.54 ]
{ "balls": [ { "color": [ 60, 160, 255 ], "density": 1, "position": [ 275, 215 ], "radius": 25, "restitution": 1, "rotation_affected": false, "sides": 4, "velocity": [ 17, 117 ] } ], "boxes": [ { "center": [ 275, 275 ], "diameter": 381, "friction": 0, "restitution": 1, "rotation": 0, "rotation_speed": 0, "sides": 6 } ], "meta": { "difficulty": "easy", "difficulty_config": { "container_scaling": 0.9, "density_scaling": 1.2, "description": "Easy: 稍大空间,稍复杂布局,稍高密度", "spacing_scaling": 0.9 }, "difficulty_level": 1, "generation_config": { "multi_container_config": { "container_scale_range": [ 0.15, 0.4 ], "margin": 100, "min_gap": 50 }, "object_generation": { "ball_radius_range": [ 15, 40 ], "spawn_margin": 80 }, "outer_container_scale": { "default_scale": 0.6, "max_scale": 0.8, "min_scale": 0.3 } }, "index": 8, "scene_space": { "center": [ 825.0000000000001, 825.0000000000001 ], "height": 1650.0000000000002, "scale_factor": 1.1, "units": "meters", "width": 1650.0000000000002 }, "scene_type": "B", "seed": 2368865 }, "physics": { "gravity_enabled": false, "gravity_x": 0, "gravity_y": -10 } }
50
function
[ { "content": "## Polygon Dynamics Prediction (Function API)\nIn this task, you will implement a single function predict_position(t) that computes the 2D positions of all balls at an arbitrary future time t under idealized mechanics. The function parses the scene configuration (containers, balls, and physics/meta), reconstructs the motions, detects and handles boundary collisions with finite-size treatment, and returns a list where each element is the [x, y] position (rounded to 2 decimals) of a ball at time t. Each evaluation of t must be computed directly from initial conditions and scene mechanics with no hidden state or accumulation across calls. Rendering, animation, and explanatory text are out of scope; prefer closed-form reasoning and avoid coarse time-stepping except where narrowly required for collision resolution.\n\n### Mechanics (General)\n- Kinematics: Use closed-form equations under constant acceleration: x(t)=x0+vx0*t+0.5*ax*t^2, y(t)=y0+vy0*t+0.5*ay*t^2.\n- Collisions: Perfectly elastic. Reflect velocity using v' = v - 2·dot(v, n̂)·n̂, where n̂ is the inward unit normal at the contact.\n- Finite size: Account for ball radii using an inward offset of the container by the radius (Minkowski shrink) when testing contact/flight.\n- Geometry: Irregular convex polygons (if present) are simple (non self-intersecting). Ball finite size must be respected in all interactions.\n- Frames and units: Origin at top-left; +x right, +y down. Positions in meters; time in seconds; angles in radians; velocities in m/s; accelerations in m/s^2.\n\n### Constraints\n- Implement only predict_position(t); no other entry points will be called.\n- No global variables; no variables defined outside the function.\n- Do not import external libraries; do not perform I/O; do not print; do not use randomness.\n- Numerical output must be round(value, 2); normalize -0.0 to 0.0.\n\n### Verification and output contract\n- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].\n- Each call must be computed independently (no state carry-over between calls).\n\n### Debugging tips\n- Inputs and units: verify required fields exist; check meters/seconds/radians; confirm radius semantics match the scene conventions.\n- Collision geometry: confirm inward normals; validate a single reflection against an axis-aligned edge (e.g., vertical wall) recovers the expected mirrored velocity.\n- Finite-size handling: test that shrinking the container by radius prevents center from penetrating walls; compare against a point-particle control.\n- Timestamp independence: evaluate t directly from initial conditions, not from prior calls; guard against hidden state.\n- Progressive validation: start from simplest scenes (one ball, static container), then enable one effect at a time (gravity, rotation, translation) to isolate failures.\n", "role": "user" }, { "content": "### Scene description\n#### Containers\n- Container 1: regular polygon with 9 sides, diameter 152.00m, center at (275, 275); initial orientation 0.000 rad\n\n#### Objects\n- Ball 1: regular polygon (8 sides), radius 25m, initial position (275, 215), initial velocity (15, 66) m/s\n\n### Physics\n- no effective gravity (treated as zero).\n\n### Dynamics\n- No additional time-varying mechanisms.\n\n### Conventions for this scene\n- Angle baseline: initial orientation 0.000 rad points to the first vertex along +X.\n- Polygon vertices (if provided) are CCW and form a simple convex polygon.\n- Radius semantics: for circles and regular polygons, 'radius' denotes circumradius (meters).\n- Collision normal: use the inward unit normal of container walls for reflections.\n- Finite-size handling: treat the container as offset inward by the ball radius (Minkowski shrink).\n\n### Task\n- Number of balls: 1\n- Your task is to WRITE PYTHON CODE (do not output numeric answers directly)\n- Define predict_position(t) returning a list of length n_balls; each element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)\n\n### Output\n- Required format: function predict_position(t: float) -> [[x1,y1],[x2,y2],...]; coordinates as 2-decimal floats", "role": "user" } ]
[ "assert check_distance(predict_position(0.55), [[283.81, 263.56]]) <= 50.0", "assert check_distance(predict_position(0.57), [[284.11, 264.88]]) <= 50.0", "assert check_distance(predict_position(0.98), [[290.27, 291.93]]) <= 50.0", "assert check_distance(predict_position(1.91), [[269.04, 292.37]]) <= 50.0", "assert check_distance(predict_position(2.05), [[262.08, 285.92]]) <= 50.0", "assert check_distance(predict_position(3.17), [[255.62, 275.63]]) <= 50.0", "assert check_distance(predict_position(3.22), [[258.32, 277.67]]) <= 50.0", "assert check_distance(predict_position(3.24), [[259.39, 278.49]]) <= 50.0", "assert check_distance(predict_position(3.52), [[274.48, 289.94]]) <= 50.0", "assert check_distance(predict_position(3.90), [[294.96, 305.48]]) <= 50.0" ]
polygon_dynamics_2d
B_1_4
1
[ 0.55, 0.57, 0.98, 1.91, 2.05, 3.17, 3.22, 3.24, 3.52, 3.9 ]
{ "balls": [ { "color": [ 60, 160, 255 ], "density": 1, "position": [ 275, 215 ], "radius": 25, "restitution": 1, "rotation_affected": false, "sides": 8, "velocity": [ 15, 66 ] } ], "boxes": [ { "center": [ 275, 275 ], "diameter": 152, "friction": 0, "restitution": 1, "rotation": 0, "rotation_speed": 0, "sides": 9 } ], "meta": { "difficulty": "easy", "difficulty_config": { "container_scaling": 0.9, "density_scaling": 1.2, "description": "Easy: 稍大空间,稍复杂布局,稍高密度", "spacing_scaling": 0.9 }, "difficulty_level": 1, "generation_config": { "multi_container_config": { "container_scale_range": [ 0.15, 0.4 ], "margin": 100, "min_gap": 50 }, "object_generation": { "ball_radius_range": [ 15, 40 ], "spawn_margin": 80 }, "outer_container_scale": { "default_scale": 0.6, "max_scale": 0.8, "min_scale": 0.3 } }, "index": 4, "scene_space": { "center": [ 825.0000000000001, 825.0000000000001 ], "height": 1650.0000000000002, "scale_factor": 1.1, "units": "meters", "width": 1650.0000000000002 }, "scene_type": "B", "seed": 8102312 }, "physics": { "gravity_enabled": false, "gravity_x": 0, "gravity_y": -10 } }
50
function
[ { "content": "## Polygon Dynamics Prediction (Function API)\nIn this task, you will implement a single function predict_position(t) that computes the 2D positions of all balls at an arbitrary future time t under idealized mechanics. The function parses the scene configuration (containers, balls, and physics/meta), reconstructs the motions, detects and handles boundary collisions with finite-size treatment, and returns a list where each element is the [x, y] position (rounded to 2 decimals) of a ball at time t. Each evaluation of t must be computed directly from initial conditions and scene mechanics with no hidden state or accumulation across calls. Rendering, animation, and explanatory text are out of scope; prefer closed-form reasoning and avoid coarse time-stepping except where narrowly required for collision resolution.\n\n### Mechanics (General)\n- Kinematics: Use closed-form equations under constant acceleration: x(t)=x0+vx0*t+0.5*ax*t^2, y(t)=y0+vy0*t+0.5*ay*t^2.\n- Collisions: Perfectly elastic. Reflect velocity using v' = v - 2·dot(v, n̂)·n̂, where n̂ is the inward unit normal at the contact.\n- Finite size: Account for ball radii using an inward offset of the container by the radius (Minkowski shrink) when testing contact/flight.\n- Geometry: Irregular convex polygons (if present) are simple (non self-intersecting). Ball finite size must be respected in all interactions.\n- Frames and units: Origin at top-left; +x right, +y down. Positions in meters; time in seconds; angles in radians; velocities in m/s; accelerations in m/s^2.\n\n### Constraints\n- Implement only predict_position(t); no other entry points will be called.\n- No global variables; no variables defined outside the function.\n- Do not import external libraries; do not perform I/O; do not print; do not use randomness.\n- Numerical output must be round(value, 2); normalize -0.0 to 0.0.\n\n### Verification and output contract\n- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].\n- Each call must be computed independently (no state carry-over between calls).\n\n### Debugging tips\n- Inputs and units: verify required fields exist; check meters/seconds/radians; confirm radius semantics match the scene conventions.\n- Collision geometry: confirm inward normals; validate a single reflection against an axis-aligned edge (e.g., vertical wall) recovers the expected mirrored velocity.\n- Finite-size handling: test that shrinking the container by radius prevents center from penetrating walls; compare against a point-particle control.\n- Timestamp independence: evaluate t directly from initial conditions, not from prior calls; guard against hidden state.\n- Progressive validation: start from simplest scenes (one ball, static container), then enable one effect at a time (gravity, rotation, translation) to isolate failures.\n", "role": "user" }, { "content": "### Scene description\n#### Containers\n- Container 1: regular polygon with 11 sides, diameter 304.00m, center at (275, 275); initial orientation 0.000 rad\n\n#### Objects\n- Ball 1: regular polygon (5 sides), radius 25m, initial position (275, 215), initial velocity (46, -22) m/s\n\n### Physics\n- no effective gravity (treated as zero).\n\n### Dynamics\n- No additional time-varying mechanisms.\n\n### Conventions for this scene\n- Angle baseline: initial orientation 0.000 rad points to the first vertex along +X.\n- Polygon vertices (if provided) are CCW and form a simple convex polygon.\n- Radius semantics: for circles and regular polygons, 'radius' denotes circumradius (meters).\n- Collision normal: use the inward unit normal of container walls for reflections.\n- Finite-size handling: treat the container as offset inward by the ball radius (Minkowski shrink).\n\n### Task\n- Number of balls: 1\n- Your task is to WRITE PYTHON CODE (do not output numeric answers directly)\n- Define predict_position(t) returning a list of length n_balls; each element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)\n\n### Output\n- Required format: function predict_position(t: float) -> [[x1,y1],[x2,y2],...]; coordinates as 2-decimal floats", "role": "user" } ]
[ "assert check_distance(predict_position(0.57), [[301.25, 202.45]]) <= 50.0", "assert check_distance(predict_position(0.78), [[310.92, 197.83]]) <= 50.0", "assert check_distance(predict_position(0.96), [[319.2, 193.87]]) <= 50.0", "assert check_distance(predict_position(2.14), [[343.84, 202.12]]) <= 50.0", "assert check_distance(predict_position(2.15), [[343.68, 202.61]]) <= 50.0", "assert check_distance(predict_position(2.34), [[340.79, 211.86]]) <= 50.0", "assert check_distance(predict_position(2.45), [[339.11, 217.21]]) <= 50.0", "assert check_distance(predict_position(2.73), [[334.84, 230.82]]) <= 50.0", "assert check_distance(predict_position(3.74), [[319.43, 279.96]]) <= 50.0", "assert check_distance(predict_position(3.88), [[317.29, 286.77]]) <= 50.0" ]
polygon_dynamics_2d
B_1_3
1
[ 0.57, 0.78, 0.96, 2.14, 2.15, 2.34, 2.45, 2.73, 3.74, 3.88 ]
{ "balls": [ { "color": [ 60, 160, 255 ], "density": 1, "position": [ 275, 215 ], "radius": 25, "restitution": 1, "rotation_affected": false, "sides": 5, "velocity": [ 46, -22 ] } ], "boxes": [ { "center": [ 275, 275 ], "diameter": 304, "friction": 0, "restitution": 1, "rotation": 0, "rotation_speed": 0, "sides": 11 } ], "meta": { "difficulty": "easy", "difficulty_config": { "container_scaling": 0.9, "density_scaling": 1.2, "description": "Easy: 稍大空间,稍复杂布局,稍高密度", "spacing_scaling": 0.9 }, "difficulty_level": 1, "generation_config": { "multi_container_config": { "container_scale_range": [ 0.15, 0.4 ], "margin": 100, "min_gap": 50 }, "object_generation": { "ball_radius_range": [ 15, 40 ], "spawn_margin": 80 }, "outer_container_scale": { "default_scale": 0.6, "max_scale": 0.8, "min_scale": 0.3 } }, "index": 3, "scene_space": { "center": [ 825.0000000000001, 825.0000000000001 ], "height": 1650.0000000000002, "scale_factor": 1.1, "units": "meters", "width": 1650.0000000000002 }, "scene_type": "B", "seed": 4131696 }, "physics": { "gravity_enabled": false, "gravity_x": 0, "gravity_y": -10 } }
50
function
[ { "content": "## Polygon Dynamics Prediction (Function API)\nIn this task, you will implement a single function predict_position(t) that computes the 2D positions of all balls at an arbitrary future time t under idealized mechanics. The function parses the scene configuration (containers, balls, and physics/meta), reconstructs the motions, detects and handles boundary collisions with finite-size treatment, and returns a list where each element is the [x, y] position (rounded to 2 decimals) of a ball at time t. Each evaluation of t must be computed directly from initial conditions and scene mechanics with no hidden state or accumulation across calls. Rendering, animation, and explanatory text are out of scope; prefer closed-form reasoning and avoid coarse time-stepping except where narrowly required for collision resolution.\n\n### Mechanics (General)\n- Kinematics: Use closed-form equations under constant acceleration: x(t)=x0+vx0*t+0.5*ax*t^2, y(t)=y0+vy0*t+0.5*ay*t^2.\n- Collisions: Perfectly elastic. Reflect velocity using v' = v - 2·dot(v, n̂)·n̂, where n̂ is the inward unit normal at the contact.\n- Finite size: Account for ball radii using an inward offset of the container by the radius (Minkowski shrink) when testing contact/flight.\n- Geometry: Irregular convex polygons (if present) are simple (non self-intersecting). Ball finite size must be respected in all interactions.\n- Frames and units: Origin at top-left; +x right, +y down. Positions in meters; time in seconds; angles in radians; velocities in m/s; accelerations in m/s^2.\n\n### Constraints\n- Implement only predict_position(t); no other entry points will be called.\n- No global variables; no variables defined outside the function.\n- Do not import external libraries; do not perform I/O; do not print; do not use randomness.\n- Numerical output must be round(value, 2); normalize -0.0 to 0.0.\n\n### Verification and output contract\n- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].\n- Each call must be computed independently (no state carry-over between calls).\n\n### Debugging tips\n- Inputs and units: verify required fields exist; check meters/seconds/radians; confirm radius semantics match the scene conventions.\n- Collision geometry: confirm inward normals; validate a single reflection against an axis-aligned edge (e.g., vertical wall) recovers the expected mirrored velocity.\n- Finite-size handling: test that shrinking the container by radius prevents center from penetrating walls; compare against a point-particle control.\n- Timestamp independence: evaluate t directly from initial conditions, not from prior calls; guard against hidden state.\n- Progressive validation: start from simplest scenes (one ball, static container), then enable one effect at a time (gravity, rotation, translation) to isolate failures.\n", "role": "user" }, { "content": "### Scene description\n#### Containers\n- Container 1: regular polygon with 9 sides, diameter 158.00m, center at (275, 275); initial orientation 0.000 rad\n\n#### Objects\n- Ball 1: regular polygon (5 sides), radius 25m, initial position (275, 215), initial velocity (-38, 59) m/s\n\n### Physics\n- no effective gravity (treated as zero).\n\n### Dynamics\n- No additional time-varying mechanisms.\n\n### Conventions for this scene\n- Angle baseline: initial orientation 0.000 rad points to the first vertex along +X.\n- Polygon vertices (if provided) are CCW and form a simple convex polygon.\n- Radius semantics: for circles and regular polygons, 'radius' denotes circumradius (meters).\n- Collision normal: use the inward unit normal of container walls for reflections.\n- Finite-size handling: treat the container as offset inward by the ball radius (Minkowski shrink).\n\n### Task\n- Number of balls: 1\n- Your task is to WRITE PYTHON CODE (do not output numeric answers directly)\n- Define predict_position(t) returning a list of length n_balls; each element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)\n\n### Output\n- Required format: function predict_position(t: float) -> [[x1,y1],[x2,y2],...]; coordinates as 2-decimal floats", "role": "user" } ]
[ "assert check_distance(predict_position(0.63), [[252.21, 258.91]]) <= 50.0", "assert check_distance(predict_position(0.65), [[251.45, 260.09]]) <= 50.0", "assert check_distance(predict_position(0.79), [[246.13, 268.35]]) <= 50.0", "assert check_distance(predict_position(2.00), [[276.25, 275.91]]) <= 50.0", "assert check_distance(predict_position(2.40), [[302.13, 265.04]]) <= 50.0", "assert check_distance(predict_position(3.00), [[302.99, 262.56]]) <= 50.0", "assert check_distance(predict_position(3.38), [[277.52, 270.45]]) <= 50.0", "assert check_distance(predict_position(3.42), [[274.84, 271.28]]) <= 50.0", "assert check_distance(predict_position(3.58), [[264.12, 274.6]]) <= 50.0", "assert check_distance(predict_position(3.69), [[256.74, 276.88]]) <= 50.0" ]
polygon_dynamics_2d
B_1_9
1
[ 0.63, 0.65, 0.79, 2, 2.4, 3, 3.38, 3.42, 3.58, 3.69 ]
{ "balls": [ { "color": [ 60, 160, 255 ], "density": 1, "position": [ 275, 215 ], "radius": 25, "restitution": 1, "rotation_affected": false, "sides": 5, "velocity": [ -38, 59 ] } ], "boxes": [ { "center": [ 275, 275 ], "diameter": 158, "friction": 0, "restitution": 1, "rotation": 0, "rotation_speed": 0, "sides": 9 } ], "meta": { "difficulty": "easy", "difficulty_config": { "container_scaling": 0.9, "density_scaling": 1.2, "description": "Easy: 稍大空间,稍复杂布局,稍高密度", "spacing_scaling": 0.9 }, "difficulty_level": 1, "generation_config": { "multi_container_config": { "container_scale_range": [ 0.15, 0.4 ], "margin": 100, "min_gap": 50 }, "object_generation": { "ball_radius_range": [ 15, 40 ], "spawn_margin": 80 }, "outer_container_scale": { "default_scale": 0.6, "max_scale": 0.8, "min_scale": 0.3 } }, "index": 9, "scene_space": { "center": [ 825.0000000000001, 825.0000000000001 ], "height": 1650.0000000000002, "scale_factor": 1.1, "units": "meters", "width": 1650.0000000000002 }, "scene_type": "B", "seed": 8152041 }, "physics": { "gravity_enabled": false, "gravity_x": 0, "gravity_y": -10 } }
50
function
[ { "content": "## Polygon Dynamics Prediction (Function API)\nIn this task, you will implement a single function predict_position(t) that computes the 2D positions of all balls at an arbitrary future time t under idealized mechanics. The function parses the scene configuration (containers, balls, and physics/meta), reconstructs the motions, detects and handles boundary collisions with finite-size treatment, and returns a list where each element is the [x, y] position (rounded to 2 decimals) of a ball at time t. Each evaluation of t must be computed directly from initial conditions and scene mechanics with no hidden state or accumulation across calls. Rendering, animation, and explanatory text are out of scope; prefer closed-form reasoning and avoid coarse time-stepping except where narrowly required for collision resolution.\n\n### Mechanics (General)\n- Kinematics: Use closed-form equations under constant acceleration: x(t)=x0+vx0*t+0.5*ax*t^2, y(t)=y0+vy0*t+0.5*ay*t^2.\n- Collisions: Perfectly elastic. Reflect velocity using v' = v - 2·dot(v, n̂)·n̂, where n̂ is the inward unit normal at the contact.\n- Finite size: Account for ball radii using an inward offset of the container by the radius (Minkowski shrink) when testing contact/flight.\n- Geometry: Irregular convex polygons (if present) are simple (non self-intersecting). Ball finite size must be respected in all interactions.\n- Frames and units: Origin at top-left; +x right, +y down. Positions in meters; time in seconds; angles in radians; velocities in m/s; accelerations in m/s^2.\n\n### Constraints\n- Implement only predict_position(t); no other entry points will be called.\n- No global variables; no variables defined outside the function.\n- Do not import external libraries; do not perform I/O; do not print; do not use randomness.\n- Numerical output must be round(value, 2); normalize -0.0 to 0.0.\n\n### Verification and output contract\n- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].\n- Each call must be computed independently (no state carry-over between calls).\n\n### Debugging tips\n- Inputs and units: verify required fields exist; check meters/seconds/radians; confirm radius semantics match the scene conventions.\n- Collision geometry: confirm inward normals; validate a single reflection against an axis-aligned edge (e.g., vertical wall) recovers the expected mirrored velocity.\n- Finite-size handling: test that shrinking the container by radius prevents center from penetrating walls; compare against a point-particle control.\n- Timestamp independence: evaluate t directly from initial conditions, not from prior calls; guard against hidden state.\n- Progressive validation: start from simplest scenes (one ball, static container), then enable one effect at a time (gravity, rotation, translation) to isolate failures.\n", "role": "user" }, { "content": "### Scene description\n#### Containers\n- Container 1: regular polygon with 10 sides, diameter 186.00m, center at (275, 275); initial orientation 0.000 rad\n\n#### Objects\n- Ball 1: regular polygon (7 sides), radius 25m, initial position (275, 215), initial velocity (74, 72) m/s\n\n### Physics\n- no effective gravity (treated as zero).\n\n### Dynamics\n- No additional time-varying mechanisms.\n\n### Conventions for this scene\n- Angle baseline: initial orientation 0.000 rad points to the first vertex along +X.\n- Polygon vertices (if provided) are CCW and form a simple convex polygon.\n- Radius semantics: for circles and regular polygons, 'radius' denotes circumradius (meters).\n- Collision normal: use the inward unit normal of container walls for reflections.\n- Finite-size handling: treat the container as offset inward by the ball radius (Minkowski shrink).\n\n### Task\n- Number of balls: 1\n- Your task is to WRITE PYTHON CODE (do not output numeric answers directly)\n- Define predict_position(t) returning a list of length n_balls; each element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)\n\n### Output\n- Required format: function predict_position(t: float) -> [[x1,y1],[x2,y2],...]; coordinates as 2-decimal floats", "role": "user" } ]
[ "assert check_distance(predict_position(0.51), [[312.76, 251.75]]) <= 50.0", "assert check_distance(predict_position(0.52), [[313.5, 252.47]]) <= 50.0", "assert check_distance(predict_position(0.79), [[333.48, 271.92]]) <= 50.0", "assert check_distance(predict_position(1.06), [[324.91, 282.09]]) <= 50.0", "assert check_distance(predict_position(1.87), [[242.15, 294.05]]) <= 50.0", "assert check_distance(predict_position(2.54), [[252.83, 278.23]]) <= 50.0", "assert check_distance(predict_position(2.91), [[286.63, 260.41]]) <= 50.0", "assert check_distance(predict_position(3.65), [[304.38, 240.99]]) <= 50.0", "assert check_distance(predict_position(3.92), [[276.79, 244.97]]) <= 50.0", "assert check_distance(predict_position(3.93), [[275.77, 245.11]]) <= 50.0" ]
polygon_dynamics_2d
B_1_6
1
[ 0.51, 0.52, 0.79, 1.06, 1.87, 2.54, 2.91, 3.65, 3.92, 3.93 ]
{ "balls": [ { "color": [ 60, 160, 255 ], "density": 1, "position": [ 275, 215 ], "radius": 25, "restitution": 1, "rotation_affected": false, "sides": 7, "velocity": [ 74, 72 ] } ], "boxes": [ { "center": [ 275, 275 ], "diameter": 186, "friction": 0, "restitution": 1, "rotation": 0, "rotation_speed": 0, "sides": 10 } ], "meta": { "difficulty": "easy", "difficulty_config": { "container_scaling": 0.9, "density_scaling": 1.2, "description": "Easy: 稍大空间,稍复杂布局,稍高密度", "spacing_scaling": 0.9 }, "difficulty_level": 1, "generation_config": { "multi_container_config": { "container_scale_range": [ 0.15, 0.4 ], "margin": 100, "min_gap": 50 }, "object_generation": { "ball_radius_range": [ 15, 40 ], "spawn_margin": 80 }, "outer_container_scale": { "default_scale": 0.6, "max_scale": 0.8, "min_scale": 0.3 } }, "index": 6, "scene_space": { "center": [ 825.0000000000001, 825.0000000000001 ], "height": 1650.0000000000002, "scale_factor": 1.1, "units": "meters", "width": 1650.0000000000002 }, "scene_type": "B", "seed": 6389196 }, "physics": { "gravity_enabled": false, "gravity_x": 0, "gravity_y": -10 } }
50
function
[ { "content": "## Polygon Dynamics Prediction (Function API)\nIn this task, you will implement a single function predict_position(t) that computes the 2D positions of all balls at an arbitrary future time t under idealized mechanics. The function parses the scene configuration (containers, balls, and physics/meta), reconstructs the motions, detects and handles boundary collisions with finite-size treatment, and returns a list where each element is the [x, y] position (rounded to 2 decimals) of a ball at time t. Each evaluation of t must be computed directly from initial conditions and scene mechanics with no hidden state or accumulation across calls. Rendering, animation, and explanatory text are out of scope; prefer closed-form reasoning and avoid coarse time-stepping except where narrowly required for collision resolution.\n\n### Mechanics (General)\n- Kinematics: Use closed-form equations under constant acceleration: x(t)=x0+vx0*t+0.5*ax*t^2, y(t)=y0+vy0*t+0.5*ay*t^2.\n- Collisions: Perfectly elastic. Reflect velocity using v' = v - 2·dot(v, n̂)·n̂, where n̂ is the inward unit normal at the contact.\n- Finite size: Account for ball radii using an inward offset of the container by the radius (Minkowski shrink) when testing contact/flight.\n- Geometry: Irregular convex polygons (if present) are simple (non self-intersecting). Ball finite size must be respected in all interactions.\n- Frames and units: Origin at top-left; +x right, +y down. Positions in meters; time in seconds; angles in radians; velocities in m/s; accelerations in m/s^2.\n\n### Constraints\n- Implement only predict_position(t); no other entry points will be called.\n- No global variables; no variables defined outside the function.\n- Do not import external libraries; do not perform I/O; do not print; do not use randomness.\n- Numerical output must be round(value, 2); normalize -0.0 to 0.0.\n\n### Verification and output contract\n- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].\n- Each call must be computed independently (no state carry-over between calls).\n\n### Debugging tips\n- Inputs and units: verify required fields exist; check meters/seconds/radians; confirm radius semantics match the scene conventions.\n- Collision geometry: confirm inward normals; validate a single reflection against an axis-aligned edge (e.g., vertical wall) recovers the expected mirrored velocity.\n- Finite-size handling: test that shrinking the container by radius prevents center from penetrating walls; compare against a point-particle control.\n- Timestamp independence: evaluate t directly from initial conditions, not from prior calls; guard against hidden state.\n- Progressive validation: start from simplest scenes (one ball, static container), then enable one effect at a time (gravity, rotation, translation) to isolate failures.\n", "role": "user" }, { "content": "### Scene description\n#### Containers\n- Container 1: regular polygon with 9 sides, diameter 389.00m, center at (275, 275); initial orientation 0.000 rad\n\n#### Objects\n- Ball 1: regular polygon (4 sides), radius 25m, initial position (275, 215), initial velocity (9, 45) m/s\n\n### Physics\n- no effective gravity (treated as zero).\n\n### Dynamics\n- No additional time-varying mechanisms.\n\n### Conventions for this scene\n- Angle baseline: initial orientation 0.000 rad points to the first vertex along +X.\n- Polygon vertices (if provided) are CCW and form a simple convex polygon.\n- Radius semantics: for circles and regular polygons, 'radius' denotes circumradius (meters).\n- Collision normal: use the inward unit normal of container walls for reflections.\n- Finite-size handling: treat the container as offset inward by the ball radius (Minkowski shrink).\n\n### Task\n- Number of balls: 1\n- Your task is to WRITE PYTHON CODE (do not output numeric answers directly)\n- Define predict_position(t) returning a list of length n_balls; each element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)\n\n### Output\n- Required format: function predict_position(t: float) -> [[x1,y1],[x2,y2],...]; coordinates as 2-decimal floats", "role": "user" } ]
[ "assert check_distance(predict_position(0.60), [[280.39, 242.03]]) <= 50.0", "assert check_distance(predict_position(0.79), [[282.09, 250.58]]) <= 50.0", "assert check_distance(predict_position(0.82), [[282.36, 251.93]]) <= 50.0", "assert check_distance(predict_position(1.12), [[285.05, 265.43]]) <= 50.0", "assert check_distance(predict_position(1.86), [[291.69, 298.72]]) <= 50.0", "assert check_distance(predict_position(2.06), [[293.49, 307.72]]) <= 50.0", "assert check_distance(predict_position(2.35), [[296.09, 320.76]]) <= 50.0", "assert check_distance(predict_position(3.63), [[307.57, 378.32]]) <= 50.0", "assert check_distance(predict_position(3.84), [[309.45, 387.76]]) <= 50.0", "assert check_distance(predict_position(3.90), [[309.99, 390.46]]) <= 50.0" ]
polygon_dynamics_2d
B_1_7
1
[ 0.6, 0.79, 0.82, 1.12, 1.86, 2.06, 2.35, 3.63, 3.84, 3.9 ]
{ "balls": [ { "color": [ 60, 160, 255 ], "density": 1, "position": [ 275, 215 ], "radius": 25, "restitution": 1, "rotation_affected": false, "sides": 4, "velocity": [ 9, 45 ] } ], "boxes": [ { "center": [ 275, 275 ], "diameter": 389, "friction": 0, "restitution": 1, "rotation": 0, "rotation_speed": 0, "sides": 9 } ], "meta": { "difficulty": "easy", "difficulty_config": { "container_scaling": 0.9, "density_scaling": 1.2, "description": "Easy: 稍大空间,稍复杂布局,稍高密度", "spacing_scaling": 0.9 }, "difficulty_level": 1, "generation_config": { "multi_container_config": { "container_scale_range": [ 0.15, 0.4 ], "margin": 100, "min_gap": 50 }, "object_generation": { "ball_radius_range": [ 15, 40 ], "spawn_margin": 80 }, "outer_container_scale": { "default_scale": 0.6, "max_scale": 0.8, "min_scale": 0.3 } }, "index": 7, "scene_space": { "center": [ 825.0000000000001, 825.0000000000001 ], "height": 1650.0000000000002, "scale_factor": 1.1, "units": "meters", "width": 1650.0000000000002 }, "scene_type": "B", "seed": 8131476 }, "physics": { "gravity_enabled": false, "gravity_x": 0, "gravity_y": -10 } }
50
function
[ { "content": "## Polygon Dynamics Prediction (Function API)\nIn this task, you will implement a single function predict_position(t) that computes the 2D positions of all balls at an arbitrary future time t under idealized mechanics. The function parses the scene configuration (containers, balls, and physics/meta), reconstructs the motions, detects and handles boundary collisions with finite-size treatment, and returns a list where each element is the [x, y] position (rounded to 2 decimals) of a ball at time t. Each evaluation of t must be computed directly from initial conditions and scene mechanics with no hidden state or accumulation across calls. Rendering, animation, and explanatory text are out of scope; prefer closed-form reasoning and avoid coarse time-stepping except where narrowly required for collision resolution.\n\n### Mechanics (General)\n- Kinematics: Use closed-form equations under constant acceleration: x(t)=x0+vx0*t+0.5*ax*t^2, y(t)=y0+vy0*t+0.5*ay*t^2.\n- Collisions: Perfectly elastic. Reflect velocity using v' = v - 2·dot(v, n̂)·n̂, where n̂ is the inward unit normal at the contact.\n- Finite size: Account for ball radii using an inward offset of the container by the radius (Minkowski shrink) when testing contact/flight.\n- Geometry: Irregular convex polygons (if present) are simple (non self-intersecting). Ball finite size must be respected in all interactions.\n- Frames and units: Origin at top-left; +x right, +y down. Positions in meters; time in seconds; angles in radians; velocities in m/s; accelerations in m/s^2.\n\n### Constraints\n- Implement only predict_position(t); no other entry points will be called.\n- No global variables; no variables defined outside the function.\n- Do not import external libraries; do not perform I/O; do not print; do not use randomness.\n- Numerical output must be round(value, 2); normalize -0.0 to 0.0.\n\n### Verification and output contract\n- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].\n- Each call must be computed independently (no state carry-over between calls).\n\n### Debugging tips\n- Inputs and units: verify required fields exist; check meters/seconds/radians; confirm radius semantics match the scene conventions.\n- Collision geometry: confirm inward normals; validate a single reflection against an axis-aligned edge (e.g., vertical wall) recovers the expected mirrored velocity.\n- Finite-size handling: test that shrinking the container by radius prevents center from penetrating walls; compare against a point-particle control.\n- Timestamp independence: evaluate t directly from initial conditions, not from prior calls; guard against hidden state.\n- Progressive validation: start from simplest scenes (one ball, static container), then enable one effect at a time (gravity, rotation, translation) to isolate failures.\n", "role": "user" }, { "content": "### Scene description\n#### Containers\n- Container 1: regular polygon with 8 sides, diameter 209.00m, center at (275, 275); initial orientation 0.000 rad\n\n#### Objects\n- Ball 1: regular polygon (8 sides), radius 25m, initial position (275, 215), initial velocity (39, -46) m/s\n\n### Physics\n- no effective gravity (treated as zero).\n\n### Dynamics\n- No additional time-varying mechanisms.\n\n### Conventions for this scene\n- Angle baseline: initial orientation 0.000 rad points to the first vertex along +X.\n- Polygon vertices (if provided) are CCW and form a simple convex polygon.\n- Radius semantics: for circles and regular polygons, 'radius' denotes circumradius (meters).\n- Collision normal: use the inward unit normal of container walls for reflections.\n- Finite-size handling: treat the container as offset inward by the ball radius (Minkowski shrink).\n\n### Task\n- Number of balls: 1\n- Your task is to WRITE PYTHON CODE (do not output numeric answers directly)\n- Define predict_position(t) returning a list of length n_balls; each element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)\n\n### Output\n- Required format: function predict_position(t: float) -> [[x1,y1],[x2,y2],...]; coordinates as 2-decimal floats", "role": "user" } ]
[ "assert check_distance(predict_position(0.75), [[285.07, 226.84]]) <= 50.0", "assert check_distance(predict_position(0.78), [[284.92, 228.64]]) <= 50.0", "assert check_distance(predict_position(0.90), [[284.32, 235.85]]) <= 50.0", "assert check_distance(predict_position(1.96), [[279.08, 299.57]]) <= 50.0", "assert check_distance(predict_position(1.96), [[279.08, 299.57]]) <= 50.0", "assert check_distance(predict_position(1.99), [[278.94, 301.37]]) <= 50.0", "assert check_distance(predict_position(2.08), [[278.49, 306.79]]) <= 50.0", "assert check_distance(predict_position(2.22), [[277.8, 315.2]]) <= 50.0", "assert check_distance(predict_position(2.46), [[276.61, 329.63]]) <= 50.0", "assert check_distance(predict_position(3.08), [[282.73, 344.69]]) <= 50.0" ]
polygon_dynamics_2d
B_1_10
1
[ 0.75, 0.78, 0.9, 1.96, 1.96, 1.99, 2.08, 2.22, 2.46, 3.08 ]
{ "balls": [ { "color": [ 60, 160, 255 ], "density": 1, "position": [ 275, 215 ], "radius": 25, "restitution": 1, "rotation_affected": false, "sides": 8, "velocity": [ 39, -46 ] } ], "boxes": [ { "center": [ 275, 275 ], "diameter": 209, "friction": 0, "restitution": 1, "rotation": 0, "rotation_speed": 0, "sides": 8 } ], "meta": { "difficulty": "easy", "difficulty_config": { "container_scaling": 0.9, "density_scaling": 1.2, "description": "Easy: 稍大空间,稍复杂布局,稍高密度", "spacing_scaling": 0.9 }, "difficulty_level": 1, "generation_config": { "multi_container_config": { "container_scale_range": [ 0.15, 0.4 ], "margin": 100, "min_gap": 50 }, "object_generation": { "ball_radius_range": [ 15, 40 ], "spawn_margin": 80 }, "outer_container_scale": { "default_scale": 0.6, "max_scale": 0.8, "min_scale": 0.3 } }, "index": 10, "scene_space": { "center": [ 825.0000000000001, 825.0000000000001 ], "height": 1650.0000000000002, "scale_factor": 1.1, "units": "meters", "width": 1650.0000000000002 }, "scene_type": "B", "seed": 4694082 }, "physics": { "gravity_enabled": false, "gravity_x": 0, "gravity_y": -10 } }
50
function
[ { "content": "## Polygon Dynamics Prediction (Function API)\nIn this task, you will implement a single function predict_position(t) that computes the 2D positions of all balls at an arbitrary future time t under idealized mechanics. The function parses the scene configuration (containers, balls, and physics/meta), reconstructs the motions, detects and handles boundary collisions with finite-size treatment, and returns a list where each element is the [x, y] position (rounded to 2 decimals) of a ball at time t. Each evaluation of t must be computed directly from initial conditions and scene mechanics with no hidden state or accumulation across calls. Rendering, animation, and explanatory text are out of scope; prefer closed-form reasoning and avoid coarse time-stepping except where narrowly required for collision resolution.\n\n### Mechanics (General)\n- Kinematics: Use closed-form equations under constant acceleration: x(t)=x0+vx0*t+0.5*ax*t^2, y(t)=y0+vy0*t+0.5*ay*t^2.\n- Collisions: Perfectly elastic. Reflect velocity using v' = v - 2·dot(v, n̂)·n̂, where n̂ is the inward unit normal at the contact.\n- Finite size: Account for ball radii using an inward offset of the container by the radius (Minkowski shrink) when testing contact/flight.\n- Geometry: Irregular convex polygons (if present) are simple (non self-intersecting). Ball finite size must be respected in all interactions.\n- Frames and units: Origin at top-left; +x right, +y down. Positions in meters; time in seconds; angles in radians; velocities in m/s; accelerations in m/s^2.\n\n### Constraints\n- Implement only predict_position(t); no other entry points will be called.\n- No global variables; no variables defined outside the function.\n- Do not import external libraries; do not perform I/O; do not print; do not use randomness.\n- Numerical output must be round(value, 2); normalize -0.0 to 0.0.\n\n### Verification and output contract\n- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].\n- Each call must be computed independently (no state carry-over between calls).\n\n### Debugging tips\n- Inputs and units: verify required fields exist; check meters/seconds/radians; confirm radius semantics match the scene conventions.\n- Collision geometry: confirm inward normals; validate a single reflection against an axis-aligned edge (e.g., vertical wall) recovers the expected mirrored velocity.\n- Finite-size handling: test that shrinking the container by radius prevents center from penetrating walls; compare against a point-particle control.\n- Timestamp independence: evaluate t directly from initial conditions, not from prior calls; guard against hidden state.\n- Progressive validation: start from simplest scenes (one ball, static container), then enable one effect at a time (gravity, rotation, translation) to isolate failures.\n", "role": "user" }, { "content": "### Scene description\n#### Containers\n- Container 1: regular polygon with 8 sides, diameter 349.00m, center at (275, 275); initial orientation 0.000 rad\n\n#### Objects\n- Ball 1: regular polygon (6 sides), radius 25m, initial position (275, 215), initial velocity (19, -57) m/s\n\n### Physics\n- no effective gravity (treated as zero).\n\n### Dynamics\n- No additional time-varying mechanisms.\n\n### Conventions for this scene\n- Angle baseline: initial orientation 0.000 rad points to the first vertex along +X.\n- Polygon vertices (if provided) are CCW and form a simple convex polygon.\n- Radius semantics: for circles and regular polygons, 'radius' denotes circumradius (meters).\n- Collision normal: use the inward unit normal of container walls for reflections.\n- Finite-size handling: treat the container as offset inward by the ball radius (Minkowski shrink).\n\n### Task\n- Number of balls: 1\n- Your task is to WRITE PYTHON CODE (do not output numeric answers directly)\n- Define predict_position(t) returning a list of length n_balls; each element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)\n\n### Output\n- Required format: function predict_position(t: float) -> [[x1,y1],[x2,y2],...]; coordinates as 2-decimal floats", "role": "user" } ]
[ "assert check_distance(predict_position(0.74), [[289.06, 172.79]]) <= 50.0", "assert check_distance(predict_position(0.78), [[289.82, 170.51]]) <= 50.0", "assert check_distance(predict_position(0.98), [[293.61, 159.1]]) <= 50.0", "assert check_distance(predict_position(1.20), [[297.79, 146.56]]) <= 50.0", "assert check_distance(predict_position(1.69), [[291.54, 156.19]]) <= 50.0", "assert check_distance(predict_position(2.12), [[280.0, 179.3]]) <= 50.0", "assert check_distance(predict_position(2.26), [[276.24, 186.82]]) <= 50.0", "assert check_distance(predict_position(2.57), [[267.92, 203.46]]) <= 50.0", "assert check_distance(predict_position(3.30), [[248.32, 242.69]]) <= 50.0", "assert check_distance(predict_position(3.97), [[230.33, 278.68]]) <= 50.0" ]
polygon_dynamics_2d
B_1_5
1
[ 0.74, 0.78, 0.98, 1.2, 1.69, 2.12, 2.26, 2.57, 3.3, 3.97 ]
{ "balls": [ { "color": [ 60, 160, 255 ], "density": 1, "position": [ 275, 215 ], "radius": 25, "restitution": 1, "rotation_affected": false, "sides": 6, "velocity": [ 19, -57 ] } ], "boxes": [ { "center": [ 275, 275 ], "diameter": 349, "friction": 0, "restitution": 1, "rotation": 0, "rotation_speed": 0, "sides": 8 } ], "meta": { "difficulty": "easy", "difficulty_config": { "container_scaling": 0.9, "density_scaling": 1.2, "description": "Easy: 稍大空间,稍复杂布局,稍高密度", "spacing_scaling": 0.9 }, "difficulty_level": 1, "generation_config": { "multi_container_config": { "container_scale_range": [ 0.15, 0.4 ], "margin": 100, "min_gap": 50 }, "object_generation": { "ball_radius_range": [ 15, 40 ], "spawn_margin": 80 }, "outer_container_scale": { "default_scale": 0.6, "max_scale": 0.8, "min_scale": 0.3 } }, "index": 5, "scene_space": { "center": [ 825.0000000000001, 825.0000000000001 ], "height": 1650.0000000000002, "scale_factor": 1.1, "units": "meters", "width": 1650.0000000000002 }, "scene_type": "B", "seed": 8230538 }, "physics": { "gravity_enabled": false, "gravity_x": 0, "gravity_y": -10 } }
50
function

Polygon Dynamics 2D

物理推理数据集

项目信息

  • 项目类型: dataset
  • 上传时间: Windows系统
  • 数据集: 包含7种场景类型(A-G)和5个难度等级的物理推理任务

场景类型

  • A: 基础碰撞检测
  • B: 重力影响
  • C: 摩擦力
  • D: 弹性碰撞
  • E: 复合物理
  • F: 高级动力学
  • G: 极端复杂场景

难度等级

  • 0: 基础 - 简单场景
  • 1: 简单 - 增加复杂度
  • 2: 中等 - 多物体交互
  • 3: 困难 - 复杂物理规则
  • 4: 极端 - 极限测试场景

使用方法

from datasets import load_dataset

# 加载数据集
dataset = load_dataset("yuhan-research/explorative-B-easy")

环境配置

方法1: 使用.env文件(推荐)

在项目根目录创建.env文件:

HF_TOKEN=your_huggingface_token_here

方法2: 设置环境变量

export HF_TOKEN="your_huggingface_token_here"

方法3: 命令行参数

python upload_to_huggingface.py --token "your_token" --username "your_username" ...

依赖安装

pip install huggingface_hub datasets python-dotenv

许可证

MIT License

Downloads last month
4