|
|
--- |
|
|
language: en |
|
|
datasets: |
|
|
- squad_v2 |
|
|
license: cc-by-4.0 |
|
|
--- |
|
|
|
|
|
# roberta-base-squad2 for Extractive QA on COVID-19 |
|
|
|
|
|
## Overview |
|
|
**Language model:** deepset/roberta-base-squad2 |
|
|
**Language:** English |
|
|
**Downstream-task:** Extractive QA |
|
|
**Training data:** [SQuAD-style CORD-19 annotations from 23rd April](https://github.com/deepset-ai/COVID-QA/blob/master/data/question-answering/200423_covidQA.json) |
|
|
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline) |
|
|
**Infrastructure**: Tesla v100 |
|
|
|
|
|
## Hyperparameters |
|
|
``` |
|
|
batch_size = 24 |
|
|
n_epochs = 3 |
|
|
base_LM_model = "deepset/roberta-base-squad2" |
|
|
max_seq_len = 384 |
|
|
learning_rate = 3e-5 |
|
|
lr_schedule = LinearWarmup |
|
|
warmup_proportion = 0.1 |
|
|
doc_stride = 128 |
|
|
xval_folds = 5 |
|
|
dev_split = 0 |
|
|
no_ans_boost = -100 |
|
|
``` |
|
|
--- |
|
|
license: cc-by-4.0 |
|
|
--- |
|
|
|
|
|
## Performance |
|
|
5-fold cross-validation on the data set led to the following results: |
|
|
|
|
|
**Single EM-Scores:** [0.222, 0.123, 0.234, 0.159, 0.158] |
|
|
**Single F1-Scores:** [0.476, 0.493, 0.599, 0.461, 0.465] |
|
|
**Single top\\_3\\_recall Scores:** [0.827, 0.776, 0.860, 0.771, 0.777] |
|
|
**XVAL EM:** 0.17890995260663506 |
|
|
**XVAL f1:** 0.49925444207319924 |
|
|
**XVAL top\\_3\\_recall:** 0.8021327014218009 |
|
|
|
|
|
This model is the model obtained from the **third** fold of the cross-validation. |
|
|
|
|
|
## Usage |
|
|
|
|
|
### In Haystack |
|
|
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. |
|
|
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/): |
|
|
```python |
|
|
# After running pip install haystack-ai "transformers[torch,sentencepiece]" |
|
|
|
|
|
from haystack import Document |
|
|
from haystack.components.readers import ExtractiveReader |
|
|
|
|
|
docs = [ |
|
|
Document(content="Python is a popular programming language"), |
|
|
Document(content="python ist eine beliebte Programmiersprache"), |
|
|
] |
|
|
|
|
|
reader = ExtractiveReader(model="deepset/roberta-base-squad2") |
|
|
reader.warm_up() |
|
|
|
|
|
question = "What is a popular programming language?" |
|
|
result = reader.run(query=question, documents=docs) |
|
|
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]} |
|
|
``` |
|
|
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline). |
|
|
|
|
|
### In Transformers |
|
|
```python |
|
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
|
|
|
|
model_name = "deepset/roberta-base-squad2" |
|
|
|
|
|
# a) Get predictions |
|
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
|
QA_input = { |
|
|
'question': 'Why is model conversion important?', |
|
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' |
|
|
} |
|
|
res = nlp(QA_input) |
|
|
|
|
|
# b) Load model & tokenizer |
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
``` |
|
|
|
|
|
|
|
|
## Authors |
|
|
**Branden Chan:** [email protected] |
|
|
**Timo M枚ller:** [email protected] |
|
|
**Malte Pietsch:** [email protected] |
|
|
**Tanay Soni:** [email protected] |
|
|
**Bogdan Kosti膰:** [email protected] |
|
|
|
|
|
## About us |
|
|
|
|
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> |
|
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> |
|
|
</div> |
|
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/). |
|
|
|
|
|
Some of our other work: |
|
|
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2) |
|
|
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1) |
|
|
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio) |
|
|
|
|
|
## Get in touch and join the Haystack community |
|
|
|
|
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. |
|
|
|
|
|
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> |
|
|
|
|
|
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai) |
|
|
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs) |
|
|
|