SentenceTransformer based on sentence-transformers/clip-ViT-L-14
This is a sentence-transformers model finetuned from sentence-transformers/clip-ViT-L-14 on the yt-title-thumbnail-pairs dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/clip-ViT-L-14
- Maximum Sequence Length: None tokens
- Output Dimensionality: None dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): CLIPModel()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dejasi5459/clip-title-thumbnail-embeddings")
# Run inference
sentences = [
'My $100,000+ Data Science Resume (what got me hired)',
'The Mapper Algorithm | Overview & Python Example Code',
'How to Build Data Pipelines for ML Projects (w/ Python Code)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Datasets:
yt-title-thumbnail-trainandyt-title-thumbnail-valid - Evaluated with
TripletEvaluator
| Metric | yt-title-thumbnail-train | yt-title-thumbnail-valid |
|---|---|---|
| cosine_accuracy | 1.0 | 1.0 |
Training Details
Training Dataset
yt-title-thumbnail-pairs
- Dataset: yt-title-thumbnail-pairs at c1b9a13
- Size: 53 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 53 samples:
anchor positive negative type PIL.PngImagePlugin.PngImageFile string string details - min: 9 tokens
- mean: 15.04 tokens
- max: 27 tokens
- min: 10 tokens
- mean: 15.3 tokens
- max: 27 tokens
- Samples:
anchor positive negative Multimodal RAG: A Beginner-friendly Guide (with Python Code)What Nature Can Teach Us About Business...Detecting Power Laws in Real-world Dataw/ Python Code I Quit My Job… Here’s How Much I Made 1 Year LaterPersistent Homology - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
yt-title-thumbnail-pairs
- Dataset: yt-title-thumbnail-pairs at c1b9a13
- Size: 11 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 11 samples:
anchor positive negative type PIL.PngImagePlugin.PngImageFile string string details - min: 8 tokens
- mean: 14.27 tokens
- max: 21 tokens
- min: 8 tokens
- mean: 14.36 tokens
- max: 19 tokens
- Samples:
anchor positive negative I Was Wrong About AI Consulting (what I learned)How to Make a Data Science Portfolio With GitHub Pages (2024)My $100,000+ Data Science Resume (what got me hired)The Mapper Algorithm4 Skills You Need to Be a Full-Stack Data ScientistFine-Tuning Text Embeddings For Domain-specific Search (w/ Python) - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 0.0001num_train_epochs: 2
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0001weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | yt-title-thumbnail-train_cosine_accuracy | yt-title-thumbnail-valid_cosine_accuracy |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.9623 | 1.0 |
| 0.25 | 1 | 2.0905 | - | - | - |
| 0.5 | 2 | 1.9661 | - | - | - |
| 0.75 | 3 | 1.5744 | - | - | - |
| 1.0 | 4 | 0.7756 | 1.4502 | - | - |
| 1.25 | 5 | 1.5625 | - | - | - |
| 1.5 | 6 | 1.2327 | - | - | - |
| 1.75 | 7 | 1.3115 | - | - | - |
| 2.0 | 8 | 0.3658 | 1.4542 | 1.0 | 1.0 |
Framework Versions
- Python: 3.10.0
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.3.0+cpu
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Model tree for dejasi5459/clip-title-thumbnail-embeddings
Base model
sentence-transformers/clip-ViT-L-14Dataset used to train dejasi5459/clip-title-thumbnail-embeddings
Evaluation results
- Cosine Accuracy on yt title thumbnail trainself-reported1.000
- Cosine Accuracy on yt title thumbnail validself-reported1.000