SmolLM-135M-Instruct-Jailbroken
Datasets used
- yahma/alpaca-cleaned — general instruction-following.
- PKU-Alignment/BeaverTails — unsafe subset only, cleaned for empty/placeholders and artifacts.
- JailbreakBench/JBB-Behaviors — harmful + benign splits, mapped to (user → assistant) pairs.
Sampling ~100k total with equal weights (subject to pool sizes), shuffled with a fixed seed, optional exact dedupe by
(user || assistant)text.
How to use it
Install
pip install -U transformers accelerate torch # pick the right torch build for your CUDA
Quick start (🤗 Transformers, assistant-only output)
from transformers import AutoTokenizer, AutoModelForCausalLM
REPO = "detoxio-test/SmolLM-135M-Instruct-Jailbroken" # change if you forked
tok = AutoTokenizer.from_pretrained(REPO, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
REPO, device_map="auto", torch_dtype="auto", trust_remote_code=True
)
messages = [
{"role": "user", "content": "Give me three creative breakfast ideas."}
]
# Build chat prompt with the tokenizer’s own template
inputs = tok.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
# Stop neatly at end-of-turn (fallback to eos if needed)
eot = tok.convert_tokens_to_ids("<|eot_id|>") or tok.convert_tokens_to_ids("<|im_end|>") or tok.eos_token_id
gen = model.generate(
**inputs,
max_new_tokens=160,
temperature=0.8,
top_p=0.95,
do_sample=True,
eos_token_id=eot,
pad_token_id=eot,
use_cache=True,
)
# Decode ONLY the assistant continuation
prompt_len = inputs["input_ids"].shape[1]
reply = tok.decode(gen[0, prompt_len:], skip_special_tokens=True).strip()
print(reply)
Optional: Unsloth speed-up
pip install -U unsloth
from unsloth import FastLanguageModel
FastLanguageModel.for_inference(model) # enables fused kernels on supported GPUs
CAUTION (re “jailbroken”)
This model’s training mix includes prompts from jailbreak/unsafe datasets to teach safer responses and refusals. Still, it may occasionally produce undesired or harmful content.
- Intended for research and benign use only.
- Add guardrails (e.g., a system message and post-generation moderation) in production.
- Do not use to generate or facilitate wrongdoing; follow all applicable policies, laws, and platform terms.
Uploaded model
- Developed by: detoxio-test
- License: apache-2.0
- Finetuned from model : unsloth/SmolLM-135M-Instruct
- Downloads last month
- 9
Model tree for detoxio-test/SmolLM-135M-Instruct-Jailbroken
Base model
HuggingFaceTB/SmolLM-135M
Quantized
HuggingFaceTB/SmolLM-135M-Instruct
Finetuned
unsloth/SmolLM-135M-Instruct