EttinX-nli-xs / README.md
dleemiller's picture
Update README.md
802360b verified
metadata
language:
  - en
tags:
  - sentence-transformers
  - cross-encoder
  - reranker
  - generated_from_trainer
  - dataset_size:942069
  - loss:PrecomputedDistillationLoss
base_model: jhu-clsp/ettin-encoder-32m
datasets:
  - dleemiller/all-nli-distill
pipeline_tag: text-classification
library_name: sentence-transformers
metrics:
  - f1_macro
  - f1_micro
  - f1_weighted
model-index:
  - name: CrossEncoder based on jhu-clsp/ettin-encoder-32m
    results:
      - task:
          type: cross-encoder-classification
          name: Cross Encoder Classification
        dataset:
          name: AllNLI dev
          type: AllNLI-dev
        metrics:
          - type: f1_macro
            value: 0.8666979985616013
            name: F1 Macro
          - type: f1_micro
            value: 0.8670702548710383
            name: F1 Micro
          - type: f1_weighted
            value: 0.8673118395148933
            name: F1 Weighted
      - task:
          type: cross-encoder-classification
          name: Cross Encoder Classification
        dataset:
          name: AllNLI test
          type: AllNLI-test
        metrics:
          - type: f1_macro
            value: 0.867425482341832
            name: F1 Macro
          - type: f1_micro
            value: 0.8678774928774928
            name: F1 Micro
          - type: f1_weighted
            value: 0.8680243291588451
            name: F1 Weighted
license: mit

EttinX Cross-Encoder: Natural Language Inference (NLI)

This cross encoder performs sequence classification for contradiction/neutral/entailment labels. This has drop-in compatibility with comparable sentence transformers cross encoders.

To train this model, I added teacher logits to the all-nli dataset dleemiller/all-nli-distill from the dleemiller/ModernCE-large-nli model. This significantly improves performance above standard training.

This 32m architecture is based on ModernBERT and is an excellent candidate for lightweight CPU inference.


Features

  • High performing: Achieves 83.80% and 88.20% (Micro F1) on MNLI mismatched and SNLI test.
  • Efficient architecture: Based on the Ettin-32m encoder design (32M parameters), offering faster inference speeds.
  • Extended context length: Processes sequences up to 8192 tokens, great for LLM output evals.

Performance

Model MNLI Mismatched SNLI Test Context Length # Parameters
dleemiller/ModernCE-large-nli 0.9202 0.9110 8192 395M
dleemiller/ModernCE-base-nli 0.9034 0.9025 8192 149M
cross-encoder/nli-deberta-v3-large 0.9049 0.9220 512 435M
cross-encoder/nli-deberta-v3-base 0.9004 0.9234 512 184M
cross-encoder/nli-distilroberta-base 0.8398 0.8838 512 82M
dleemiller/EttinX-nli-xs 0.8380 0.8820 8192 32M
dleemiller/EttinX-nli-xxs 0.8047 0.8695 8192 17M

Usage

To use EttinX for NLI tasks, you can load the model with the Hugging Face sentence-transformers library:

from sentence_transformers import CrossEncoder

# Load EttinX model
model = CrossEncoder("dleemiller/EttinX-nli-xs")

scores = model.predict([
    ('A man is eating pizza', 'A man eats something'),
    ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')
])

# Convert scores to labels
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
# ['entailment', 'contradiction']

Training Details

Pretraining

We initialize the `` weights.

Details:

  • Batch size: 512
  • Learning rate: 1e-4
  • Attention Dropout: attention dropout 0.1

Fine-Tuning

Fine-tuning was performed on the dleemiller/all-nli-distill dataset.

Validation Results

The model achieved the following test set micro f1 performance after fine-tuning:

  • MNLI Unmatched: 0.8380
  • SNLI: 0.8820

Model Card

  • Architecture: Ettin-encoder-32m
  • Fine-Tuning Data: dleemiller/all-nli-distill

Thank You

Thanks to the Johns Hopkins team for providing the ModernBERT models, and the Sentence Transformers team for their leadership in transformer encoder models.


Citation

If you use this model in your research, please cite:

@misc{moderncenli2025,
  author = {Miller, D. Lee},
  title = {EttinX NLI: An NLI cross encoder model},
  year = {2025},
  publisher = {Hugging Face Hub},
  url = {https://huggingface.co/dleemiller/EttinX-nli-xxs},
}

License

This model is licensed under the MIT License.