multilingual_model_v02
This model is a fine-tuned version of bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3359
 - Accuracy: 0.8707
 - F1 Score: 0.7728
 - Recall: 0.8527
 - Precision: 0.7066
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 16
 - eval_batch_size: 16
 - seed: 42
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - num_epochs: 3
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision | 
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 219 | 0.3391 | 0.8707 | 0.7728 | 0.8527 | 0.7066 | 
| No log | 2.0 | 438 | 0.3377 | 0.8707 | 0.7728 | 0.8527 | 0.7066 | 
| 0.3688 | 3.0 | 657 | 0.3359 | 0.8707 | 0.7728 | 0.8527 | 0.7066 | 
Framework versions
- Transformers 4.41.2
 - Pytorch 2.3.0+cu121
 - Datasets 2.19.2
 - Tokenizers 0.19.1
 
- Downloads last month
 - 1
 
Model tree for dliladar/multilingual_model_v02
Base model
google-bert/bert-base-multilingual-uncased