ModernBERT-large-chat-v0
ModernBERT-large-chat-v0 is a generative variant of ModernBERT-large, finetuned using the dLLM framework. This model demonstrates that BERT can serve as a diffusion-based chatbot trained purely with supervised instruction data — no continual generative pretraining required.
Model Overview
ModernBERT-large-chat-v0 has the following features:
- Type: Diffusion-based generative BERT
- Architecture: Transformer encoder with 8192-token context
- Training Objective: Supervised finetuning on instruction–response pairs
- Framework: dLLM
- Base Model: ModernBERT-large
- Datasets: tulu-3-sft-mixture, smoltalk
For training details, see the dLLM–BERT report on W&B.
Installation
pip install torch transformers accelerate
For diffusion-based generation support:
pip install git+https://github.com/ZHZisZZ/dllm
Quick Start
import torch
import numpy as np
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForMaskedLM
def add_gumbel_noise(logits, temperature):
if temperature == 0:
return logits
logits = logits.to(torch.float64)
noise = torch.rand_like(logits, dtype=torch.float64)
gumbel_noise = (- torch.log(noise)) ** temperature
return logits.exp() / gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
mask_num = mask_index.sum(dim=1, keepdim=True)
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
for i in range(mask_num.size(0)):
num_transfer_tokens[i, :remainder[i]] += 1
return num_transfer_tokens
@ torch.no_grad()
def generate(model, prompt, steps=128, gen_length=128, block_length=64, temperature=0.0, cfg_scale=0., remasking='random'):
mask_id = tokenizer.mask_token_id
x = torch.full((1, prompt.shape[1] + gen_length), mask_id, dtype=torch.long).to(model.device)
x[:, :prompt.shape[1]] = prompt.clone()
prompt_index = (x != mask_id)
assert gen_length % block_length == 0
num_blocks = gen_length // block_length
assert steps % num_blocks == 0
steps = steps // num_blocks
for num_block in range(num_blocks):
block_mask_index = (x[:, prompt.shape[1] + num_block * block_length: prompt.shape[1] + (num_block + 1) * block_length:] == mask_id)
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
for i in range(steps):
mask_index = (x == mask_id)
if cfg_scale > 0.:
un_x = x.clone()
un_x[prompt_index] = mask_id
x_ = torch.cat([x, un_x], dim=0)
logits = model(x_).logits
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
else:
logits = model(x).logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
if remasking == 'low_confidence':
p = F.softmax(logits, dim=-1)
x0_p = torch.squeeze(
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
elif remasking == 'random':
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
raise NotImplementedError(remasking)
x0_p[:, prompt.shape[1] + (num_block + 1) * block_length:] = -np.inf
x0 = torch.where(mask_index, x0, x)
confidence = torch.where(mask_index, x0_p, -np.inf)
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
_, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
transfer_index[j, select_index] = True
x[transfer_index] = x0[transfer_index]
return x
device = 'cuda'
model = AutoModelForMaskedLM.from_pretrained('dllm-collection/ModernBERT-large-chat-v0', dtype=torch.bfloat16).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained('dllm-collection/ModernBERT-large-chat-v0')
prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?"
m = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": prompt}
]
prompt = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
input_ids = tokenizer(prompt)['input_ids']
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
text = generate(model, input_ids, steps=128, gen_length=128, block_length=64, temperature=0.0, cfg_scale=0.0, remasking='random')
print(tokenizer.batch_decode(text[:, input_ids.shape[1]:], skip_special_tokens=False)[0])
Generation Parameters
| Parameter | Description | Default |
|---|---|---|
max_new_tokens |
Number of tokens to generate | 128 |
steps |
Number of diffusion denoising iterations | 128 |
temperature |
Sampling temperature; set to 0.0 for deterministic generation |
0.0 |
block_length |
Token block size used during iterative denoising | 64 |
cfg_scale |
Classifier-free guidance scale controlling instruction adherence (higher = more deterministic) | 0.0 |
remasking |
Strategy for re-masking during each denoising step (random, none, or confidence) |
random |
Command-Line Interface
Folowing the Github repo's demo script examples/bert/chat.py
python -u examples/bert/chat.py \
--model_name_or_path dllm-collection/ModernBERT-large-chat-v0 \
--chat True
Technical Details
ModernBERT-large-chat-v0 is trained using the dLLM framework, which extends Masked Language Modeling (MLM) to Masked Diffusion Language Modeling (MDLM) — sampling mask ratios from 0–100% during training. This enables iterative denoising-based generation rather than token-by-token decoding.
Finetuned on the tulu-3-sft-mixture and smoltalk, ModernBERT-large can gain conversational ability with diffusion.
Citation
If you use ModernBERT-large-chat-v0 or dLLM, please cite:
@misc{dllm,
author = {Zhanhui Zhou and Lingjie Chen and Hanghang Tong and Dawn Song},
title = {dLLM: Simple Diffusion Language Modeling},
year = {2025},
howpublished = {\url{https://github.com/ZHZisZZ/dllm}},
}
- Downloads last month
- 1,603