ARC-Easy_Llama-3.2-1B-1e9mspm5

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6837
  • Model Preparation Time: 0.0059
  • Mdl: 562.2638
  • Accumulated Loss: 389.7316
  • Correct Preds: 444.0
  • Total Preds: 570.0
  • Accuracy: 0.7789
  • Correct Gen Preds: 0.0
  • Gen Accuracy: 0.0
  • Correct Gen Preds 32: 0.0
  • Correct Preds 32: 119.0
  • Total Labels 32: 158.0
  • Accuracy 32: 0.7532
  • Gen Accuracy 32: 0.0
  • Correct Gen Preds 33: 0.0
  • Correct Preds 33: 126.0
  • Total Labels 33: 152.0
  • Accuracy 33: 0.8289
  • Gen Accuracy 33: 0.0
  • Correct Gen Preds 34: 0.0
  • Correct Preds 34: 111.0
  • Total Labels 34: 142.0
  • Accuracy 34: 0.7817
  • Gen Accuracy 34: 0.0
  • Correct Gen Preds 35: 0.0
  • Correct Preds 35: 88.0
  • Total Labels 35: 118.0
  • Accuracy 35: 0.7458
  • Gen Accuracy 35: 0.0
  • Correct Gen Preds 36: 0.0
  • Correct Preds 36: 0.0
  • Total Labels 36: 0.0
  • Accuracy 36: 0.0
  • Gen Accuracy 36: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 112
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.001
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Mdl Accumulated Loss Correct Preds Total Preds Accuracy Correct Gen Preds Gen Accuracy Correct Gen Preds 32 Correct Preds 32 Total Labels 32 Accuracy 32 Gen Accuracy 32 Correct Gen Preds 33 Correct Preds 33 Total Labels 33 Accuracy 33 Gen Accuracy 33 Correct Gen Preds 34 Correct Preds 34 Total Labels 34 Accuracy 34 Gen Accuracy 34 Correct Gen Preds 35 Correct Preds 35 Total Labels 35 Accuracy 35 Gen Accuracy 35 Correct Gen Preds 36 Correct Preds 36 Total Labels 36 Accuracy 36 Gen Accuracy 36
No log 0 0 1.5354 0.0059 1262.6022 875.1692 172.0 570.0 0.3018 170.0 0.2982 154.0 154.0 158.0 0.9747 0.9747 0.0 0.0 152.0 0.0 0.0 15.0 17.0 142.0 0.1197 0.1056 1.0 1.0 118.0 0.0085 0.0085 0.0 0.0 0.0 0.0 0.0
0.4429 1.0 36 0.6869 0.0059 564.8439 391.5200 430.0 570.0 0.7544 60.0 0.1053 0.0 130.0 158.0 0.8228 0.0 10.0 113.0 152.0 0.7434 0.0658 43.0 108.0 142.0 0.7606 0.3028 7.0 79.0 118.0 0.6695 0.0593 0.0 0.0 0.0 0.0 0.0
0.1294 2.0 72 0.6837 0.0059 562.2638 389.7316 444.0 570.0 0.7789 0.0 0.0 0.0 119.0 158.0 0.7532 0.0 0.0 126.0 152.0 0.8289 0.0 0.0 111.0 142.0 0.7817 0.0 0.0 88.0 118.0 0.7458 0.0 0.0 0.0 0.0 0.0 0.0
0.0423 3.0 108 0.9005 0.0059 740.5548 513.3135 418.0 570.0 0.7333 411.0 0.7211 110.0 116.0 158.0 0.7342 0.6962 128.0 128.0 152.0 0.8421 0.8421 102.0 103.0 142.0 0.7254 0.7183 71.0 71.0 118.0 0.6017 0.6017 0.0 0.0 0.0 0.0 0.0
0.0101 4.0 144 1.1974 0.0059 984.6596 682.5140 429.0 570.0 0.7526 111.0 0.1947 0.0 117.0 158.0 0.7405 0.0 49.0 124.0 152.0 0.8158 0.3224 59.0 109.0 142.0 0.7676 0.4155 3.0 79.0 118.0 0.6695 0.0254 0.0 0.0 0.0 0.0 0.0
0.0022 5.0 180 1.9793 0.0059 1627.6320 1128.1885 428.0 570.0 0.7509 384.0 0.6737 85.0 112.0 158.0 0.7089 0.5380 118.0 119.0 152.0 0.7829 0.7763 109.0 109.0 142.0 0.7676 0.7676 72.0 88.0 118.0 0.7458 0.6102 0.0 0.0 0.0 0.0 0.0
0.0004 6.0 216 2.1635 0.0059 1779.1008 1233.1787 440.0 570.0 0.7719 236.0 0.4140 17.0 126.0 158.0 0.7975 0.1076 79.0 118.0 152.0 0.7763 0.5197 92.0 112.0 142.0 0.7887 0.6479 48.0 84.0 118.0 0.7119 0.4068 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
1B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for donoway/ARC-Easy_Llama-3.2-1B-1e9mspm5

Finetuned
(817)
this model

Evaluation results