wav2vec2-large-960h-cv
This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1709
- Wer: 0.1014
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.6971 | 0.7663 | 100 | 0.3745 | 0.1211 |
| 0.4986 | 1.5287 | 200 | 0.2636 | 0.1122 |
| 0.4133 | 2.2912 | 300 | 0.2104 | 0.1112 |
| 0.3812 | 3.0536 | 400 | 0.1883 | 0.1175 |
| 0.3507 | 3.8199 | 500 | 0.1751 | 0.1042 |
| 0.3195 | 4.5824 | 600 | 0.1709 | 0.1014 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for enlihhhhh/wav2vec2-large-960h-cv
Base model
facebook/wav2vec2-base-960h