Model Card for xlstm-7b-instruct-phase-2

This model is a fine-tuned version of ethicalabs/xLSTM-7b-Instruct for task alignment.

It has been trained using TRL using SFT on assistant-only tokens.

The k_proj and v_proj matrices have been frozen to isolate and preserve the model's pre-trained knowledge base.

This fine-tuning focused only on the q_proj (query) and FFN matrices, adapting the model's reasoning and query-retrieval mechanisms without overwriting its core, frozen knowledge.

This experiment was designed to test the hypothesis that the model's reasoning capabilities (q_proj) could be specialized for math/code while its knowledge (k_proj, v_proj) remained intact.

Quick start

Work in Progress!

Training procedure

Visualize in Weights & Biases

This model was trained with SFT.

Evaluation

This model has been loaded in 4-bit and evaluated with lighteval

Task Version Metric Value Stderr
all acc 0.5383 ± 0.1476
acc:logprob_normalization=LogProbCharNorm(name='norm', ignore_first_space=True) 0.7000 ± 0.1528
acc:logprob_normalization=LogProbCharNorm(name='norm', ignore_first_space=False) 0.8000 ± 0.1333
truthfulqa_mc1 0.6000 ± 0.1633
truthfulqa_mc2 0.7066 ± 0.1481
em:normalize_gold=<function gsm8k_normalizer at 0x7c5d972c3ba0>&normalize_pred=<function gsm8k_normalizer at 0x7c5d972c3ba0> 0.6000 ± 0.1633
leaderboard:arc:challenge:25 acc 0.8000 ± 0.1333
acc:logprob_normalization=LogProbCharNorm(name='norm', ignore_first_space=True) 0.7000 ± 0.1528
leaderboard:gsm8k:5 em:normalize_gold=<function gsm8k_normalizer at 0x7c5d972c3ba0>&normalize_pred=<function gsm8k_normalizer at 0x7c5d972c3ba0> 0.6000 ± 0.1633
leaderboard:hellaswag:10 acc 0.5000 ± 0.1667
acc:logprob_normalization=LogProbCharNorm(name='norm', ignore_first_space=False) 0.8000 ± 0.1333
leaderboard:mmlu:_average:5 acc 0.5316 ± 0.1474
leaderboard:mmlu:abstract_algebra:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:anatomy:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:astronomy:5 acc 0.7000 ± 0.1528
leaderboard:mmlu:business_ethics:5 acc 0.4000 ± 0.1633
leaderboard:mmlu:clinical_knowledge:5 acc 0.7000 ± 0.1528
leaderboard:mmlu:college_biology:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:college_chemistry:5 acc 0.4000 ± 0.1633
leaderboard:mmlu:college_computer_science:5 acc 0.4000 ± 0.1633
leaderboard:mmlu:college_mathematics:5 acc 0.2000 ± 0.1333
leaderboard:mmlu:college_medicine:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:college_physics:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:computer_security:5 acc 0.9000 ± 0.1000
leaderboard:mmlu:conceptual_physics:5 acc 0.4000 ± 0.1633
leaderboard:mmlu:econometrics:5 acc 0.4000 ± 0.1633
leaderboard:mmlu:electrical_engineering:5 acc 0.7000 ± 0.1528
leaderboard:mmlu:elementary_mathematics:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:formal_logic:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:global_facts:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:high_school_biology:5 acc 0.9000 ± 0.1000
leaderboard:mmlu:high_school_chemistry:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:high_school_computer_science:5 acc 0.6000 ± 0.1633
leaderboard:mmlu:high_school_european_history:5 acc 0.7000 ± 0.1528
leaderboard:mmlu:high_school_geography:5 acc 1.0000 ± 0.0000
leaderboard:mmlu:high_school_government_and_politics:5 acc 0.8000 ± 0.1333
leaderboard:mmlu:high_school_macroeconomics:5 acc 0.6000 ± 0.1633
leaderboard:mmlu:high_school_mathematics:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:high_school_microeconomics:5 acc 0.7000 ± 0.1528
leaderboard:mmlu:high_school_physics:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:high_school_psychology:5 acc 0.9000 ± 0.1000
leaderboard:mmlu:high_school_statistics:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:high_school_us_history:5 acc 0.8000 ± 0.1333
leaderboard:mmlu:high_school_world_history:5 acc 0.9000 ± 0.1000
leaderboard:mmlu:human_aging:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:human_sexuality:5 acc 0.4000 ± 0.1633
leaderboard:mmlu:international_law:5 acc 0.6000 ± 0.1633
leaderboard:mmlu:jurisprudence:5 acc 0.6000 ± 0.1633
leaderboard:mmlu:logical_fallacies:5 acc 0.4000 ± 0.1633
leaderboard:mmlu:machine_learning:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:management:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:marketing:5 acc 0.8000 ± 0.1333
leaderboard:mmlu:medical_genetics:5 acc 0.9000 ± 0.1000
leaderboard:mmlu:miscellaneous:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:moral_disputes:5 acc 0.7000 ± 0.1528
leaderboard:mmlu:moral_scenarios:5 acc 0.1000 ± 0.1000
leaderboard:mmlu:nutrition:5 acc 0.6000 ± 0.1633
leaderboard:mmlu:philosophy:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:prehistory:5 acc 0.4000 ± 0.1633
leaderboard:mmlu:professional_accounting:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:professional_law:5 acc 0.4000 ± 0.1633
leaderboard:mmlu:professional_medicine:5 acc 0.2000 ± 0.1333
leaderboard:mmlu:professional_psychology:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:public_relations:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:security_studies:5 acc 0.3000 ± 0.1528
leaderboard:mmlu:sociology:5 acc 0.8000 ± 0.1333
leaderboard:mmlu:us_foreign_policy:5 acc 0.7000 ± 0.1528
leaderboard:mmlu:virology:5 acc 0.5000 ± 0.1667
leaderboard:mmlu:world_religions:5 acc 0.8000 ± 0.1333
leaderboard:truthfulqa:mc:0 truthfulqa_mc1 0.6000 ± 0.1633
truthfulqa_mc2 0.7066 ± 0.1481
leaderboard:winogrande:5 acc 0.7000 ± 0.1528

Framework versions

  • PEFT 0.17.1
  • TRL: 0.24.0
  • Transformers: 4.57.1
  • Pytorch: 2.8.0+cu126
  • Datasets: 4.2.0
  • Tokenizers: 0.22.1

Citations

Cite TRL as:

@misc{vonwerra2022trl,
    title        = {{TRL: Transformer Reinforcement Learning}},
    author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
    year         = 2020,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/huggingface/trl}}
}
Downloads last month
138
Safetensors
Model size
7B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ethicalabs/xLSTM-7b-Polymath

Base model

NX-AI/xLSTM-7b
Finetuned
(1)
this model