|
import tensorflow as tf |
|
|
|
from data.utils import clean_task_instruction, euler_to_quaternion, quaternion_to_rotation_matrix,\ |
|
rotation_matrix_to_ortho6d |
|
|
|
|
|
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: |
|
""" |
|
Convert terminate action to a boolean, where True means terminate. |
|
""" |
|
return tf.reduce_all(tf.equal(terminate_act, tf.constant([1, 0, 0], dtype=tf.int32))) |
|
|
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
|
|
|
|
|
|
action: dict = step['action'] |
|
|
|
|
|
action['terminate'] = terminate_act_to_bool(action['terminate_episode']) |
|
|
|
eef_delta_pos = action['world_vector'] |
|
eef_ang = action['rotation_delta'] |
|
eef_ang = euler_to_quaternion(eef_ang) |
|
grip_open = 1 - (action['gripper_closedness_action'] + 1) / 2 |
|
base_delta_pos = action['base_displacement_vector'] |
|
base_delta_ang = action['base_displacement_vertical_rotation'] |
|
|
|
|
|
arm_action = tf.concat([eef_delta_pos, eef_ang, grip_open], axis=0) |
|
action['arm_concat'] = arm_action |
|
base_action = tf.concat([base_delta_pos, base_delta_ang], axis=0) |
|
action['base_concat'] = base_action |
|
|
|
|
|
|
|
|
|
action['format'] = tf.constant( |
|
"eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w,gripper_open,base_vel_x,base_vel_y,base_angular_vel") |
|
|
|
|
|
|
|
|
|
state = step['observation'] |
|
|
|
|
|
eef_pos = state['clip_function_input/base_pose_tool_reached'][:3] |
|
eef_ang = quaternion_to_rotation_matrix(state['clip_function_input/base_pose_tool_reached'][3:]) |
|
eef_ang = rotation_matrix_to_ortho6d(eef_ang) |
|
grip_open = 1 - state['gripper_closed'] |
|
|
|
|
|
state['arm_concat'] = tf.concat([eef_pos, eef_ang, grip_open], axis=0) |
|
|
|
|
|
|
|
state['format'] = tf.constant( |
|
"eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5,gripper_open") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['observation']['natural_language_instruction'] |
|
instr = clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
|
|
DATASET_DIR = 'data/datasets/openx_embod' |
|
DATASET_NAME = 'kuka' |
|
|
|
dataset = tfds.builder_from_directory( |
|
builder_dir=dataset_to_path( |
|
DATASET_NAME, DATASET_DIR)) |
|
dataset = dataset.as_dataset(split='all') |
|
|
|
|
|
|
|
episode_num = len(dataset) |
|
for episode in dataset: |
|
|
|
|
|
for step in episode['steps']: |
|
process_step(step) |
|
|
|
print(f"episode_num: {episode_num}") |
|
|