|
import tensorflow as tf |
|
|
|
from data.utils import clean_task_instruction, euler_to_rotation_matrix, rotation_matrix_to_ortho6d |
|
|
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
action_dict = step['action'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
eef_pos_vel = action_dict[:3] |
|
eef_ang_vel = action_dict[3:6] |
|
|
|
|
|
grip_pos = 1 - tf.clip_by_value(action_dict[-1:], 0, 1) |
|
|
|
|
|
|
|
|
|
step['action'] = {} |
|
action = step['action'] |
|
|
|
arm_action = tf.concat([eef_pos_vel, eef_ang_vel, grip_pos], axis=0) |
|
action['arm_concat'] = arm_action |
|
|
|
|
|
|
|
action['format'] = tf.constant( |
|
"eef_vel_x,eef_vel_y,eef_vel_z,eef_angular_vel_roll,eef_angular_vel_pitch,eef_angular_vel_yaw,gripper_joint_0_pos") |
|
|
|
|
|
|
|
state = step['observation'] |
|
|
|
|
|
eef_pos = state['state'][:3] |
|
eef_ang = state['state'][3:6] |
|
eef_ang = euler_to_rotation_matrix(eef_ang) |
|
eef_ang = rotation_matrix_to_ortho6d(eef_ang) |
|
|
|
grip_pos = state['state'][-2:] |
|
|
|
|
|
state['arm_concat'] = tf.concat([ |
|
grip_pos,eef_pos,eef_ang], axis=0) |
|
|
|
|
|
|
|
state['format'] = tf.constant( |
|
"gripper_joint_0_pos,gripper_joint_1_pos,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['language_instruction'] |
|
|
|
step['observation'] = state |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
pass |
|
|