|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from collections import OrderedDict |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.jit import Final |
|
from timm.models.vision_transformer import Attention, Mlp, RmsNorm, use_fused_attn |
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=torch.bfloat16): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
self.dtype = dtype |
|
|
|
def timestep_embedding(self, t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange( |
|
start=0, end=half, dtype=torch.float32, device=t.device) / half |
|
) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding.to(self.dtype) |
|
|
|
def forward(self, t): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
|
|
|
|
|
|
class CrossAttention(nn.Module): |
|
""" |
|
A cross-attention layer with flash attention. |
|
""" |
|
fused_attn: Final[bool] |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0, |
|
proj_drop: float = 0, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
) -> None: |
|
super().__init__() |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x: torch.Tensor, c: torch.Tensor, |
|
mask: torch.Tensor | None = None) -> torch.Tensor: |
|
B, N, C = x.shape |
|
_, L, _ = c.shape |
|
q = self.q(x).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) |
|
kv = self.kv(c).reshape(B, L, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) |
|
k, v = kv.unbind(0) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
|
|
|
|
if mask is not None: |
|
mask = mask.reshape(B, 1, 1, L) |
|
mask = mask.expand(-1, -1, N, -1) |
|
|
|
if self.fused_attn: |
|
x = F.scaled_dot_product_attention( |
|
query=q, |
|
key=k, |
|
value=v, |
|
dropout_p=self.attn_drop.p if self.training else 0., |
|
attn_mask=mask |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
if mask is not None: |
|
attn = attn.masked_fill_(mask.logical_not(), float('-inf')) |
|
attn = attn.softmax(dim=-1) |
|
if self.attn_drop.p > 0: |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.permute(0, 2, 1, 3).reshape(B, N, C) |
|
x = self.proj(x) |
|
if self.proj_drop.p > 0: |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class RDTBlock(nn.Module): |
|
""" |
|
A RDT block with cross-attention conditioning. |
|
""" |
|
def __init__(self, hidden_size, num_heads, **block_kwargs): |
|
super().__init__() |
|
self.norm1 = RmsNorm(hidden_size, eps=1e-6) |
|
self.attn = Attention( |
|
dim=hidden_size, num_heads=num_heads, |
|
qkv_bias=True, qk_norm=True, |
|
norm_layer=RmsNorm,**block_kwargs) |
|
self.cross_attn = CrossAttention( |
|
hidden_size, num_heads=num_heads, |
|
qkv_bias=True, qk_norm=True, |
|
norm_layer=RmsNorm,**block_kwargs) |
|
|
|
self.norm2 = RmsNorm(hidden_size, eps=1e-6) |
|
approx_gelu = lambda: nn.GELU(approximate="tanh") |
|
self.ffn = Mlp(in_features=hidden_size, |
|
hidden_features=hidden_size, |
|
act_layer=approx_gelu, drop=0) |
|
self.norm3 = RmsNorm(hidden_size, eps=1e-6) |
|
|
|
def forward(self, x, c, mask=None): |
|
origin_x = x |
|
x = self.norm1(x) |
|
x = self.attn(x) |
|
x = x + origin_x |
|
|
|
origin_x = x |
|
x = self.norm2(x) |
|
x = self.cross_attn(x, c, mask) |
|
x = x + origin_x |
|
|
|
origin_x = x |
|
x = self.norm3(x) |
|
x = self.ffn(x) |
|
x = x + origin_x |
|
|
|
return x |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of RDT. |
|
""" |
|
def __init__(self, hidden_size, out_channels): |
|
super().__init__() |
|
self.norm_final = RmsNorm(hidden_size, eps=1e-6) |
|
approx_gelu = lambda: nn.GELU(approximate="tanh") |
|
self.ffn_final = Mlp(in_features=hidden_size, |
|
hidden_features=hidden_size, |
|
out_features=out_channels, |
|
act_layer=approx_gelu, drop=0) |
|
|
|
def forward(self, x): |
|
x = self.norm_final(x) |
|
x = self.ffn_final(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float64) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000**omega |
|
|
|
if not isinstance(pos, np.ndarray): |
|
pos = np.array(pos, dtype=np.float64) |
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
def get_nd_sincos_pos_embed_from_grid(embed_dim, grid_sizes): |
|
""" |
|
embed_dim: output dimension for each position |
|
grid_sizes: the grids sizes in each dimension (K,). |
|
out: (grid_sizes[0], ..., grid_sizes[K-1], D) |
|
""" |
|
num_sizes = len(grid_sizes) |
|
|
|
num_valid_sizes = len([x for x in grid_sizes if x > 1]) |
|
emb = np.zeros(grid_sizes + (embed_dim,)) |
|
|
|
dim_for_each_grid = embed_dim // num_valid_sizes |
|
|
|
if dim_for_each_grid % 2 != 0: |
|
dim_for_each_grid -= 1 |
|
valid_size_idx = 0 |
|
for size_idx in range(num_sizes): |
|
grid_size = grid_sizes[size_idx] |
|
if grid_size <= 1: |
|
continue |
|
pos = np.arange(grid_size) |
|
posemb_shape = [1] * len(grid_sizes) + [dim_for_each_grid] |
|
posemb_shape[size_idx] = -1 |
|
emb[..., valid_size_idx * dim_for_each_grid:(valid_size_idx + 1) * dim_for_each_grid] += \ |
|
get_1d_sincos_pos_embed_from_grid(dim_for_each_grid, pos).reshape(posemb_shape) |
|
valid_size_idx += 1 |
|
return emb |
|
|
|
|
|
def get_multimodal_cond_pos_embed(embed_dim, mm_cond_lens: OrderedDict, |
|
embed_modality=True): |
|
""" |
|
Generate position embeddings for multimodal conditions. |
|
|
|
mm_cond_lens: an OrderedDict containing |
|
(modality name, modality token length) pairs. |
|
For `"image"` modality, the value can be a multi-dimensional tuple. |
|
If the length < 0, it means there is no position embedding for the modality or grid. |
|
embed_modality: whether to embed the modality information. Default is True. |
|
""" |
|
num_modalities = len(mm_cond_lens) |
|
modality_pos_embed = np.zeros((num_modalities, embed_dim)) |
|
if embed_modality: |
|
|
|
|
|
modality_sincos_embed = get_1d_sincos_pos_embed_from_grid( |
|
embed_dim // 2, torch.arange(num_modalities)) |
|
modality_pos_embed[:, :embed_dim // 2] = modality_sincos_embed |
|
|
|
pos_embed_dim = embed_dim // 2 |
|
else: |
|
|
|
pos_embed_dim = embed_dim |
|
|
|
|
|
c_pos_emb = np.zeros((0, embed_dim)) |
|
for idx, (modality, cond_len) in enumerate(mm_cond_lens.items()): |
|
if modality == "image" and \ |
|
(isinstance(cond_len, tuple) or isinstance(cond_len, list)): |
|
all_grid_sizes = tuple([abs(x) for x in cond_len]) |
|
embed_grid_sizes = tuple([x if x > 0 else 1 for x in cond_len]) |
|
cond_sincos_embed = get_nd_sincos_pos_embed_from_grid( |
|
pos_embed_dim, embed_grid_sizes) |
|
cond_pos_embed = np.zeros(all_grid_sizes + (embed_dim,)) |
|
cond_pos_embed[..., -pos_embed_dim:] += cond_sincos_embed |
|
cond_pos_embed = cond_pos_embed.reshape((-1, embed_dim)) |
|
else: |
|
cond_sincos_embed = get_1d_sincos_pos_embed_from_grid( |
|
pos_embed_dim, torch.arange(cond_len if cond_len > 0 else 1)) |
|
cond_pos_embed = np.zeros((abs(cond_len), embed_dim)) |
|
cond_pos_embed[:, -pos_embed_dim:] += cond_sincos_embed |
|
cond_pos_embed += modality_pos_embed[idx] |
|
c_pos_emb = np.concatenate([c_pos_emb, cond_pos_embed], axis=0) |
|
|
|
return c_pos_emb |
|
|