efficient_drama
#2
by
gshreya
- opened
- README.md +32 -8
- config.json +1 -1
- modeling_drama.py +111 -152
- modeling_drama_nested.py +639 -0
- modeling_drama_non_nested.py +184 -0
README.md
CHANGED
|
@@ -60,9 +60,10 @@ model_name = "facebook/drama-base"
|
|
| 60 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 61 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 62 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).to(device)
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
query_embs = model.encode_queries(tokenizer, queries)
|
| 65 |
-
doc_embs = model.encode_documents(tokenizer, documents)
|
| 66 |
|
| 67 |
scores = query_embs @ doc_embs.T
|
| 68 |
print(scores.tolist())
|
|
@@ -77,8 +78,8 @@ print(scores.tolist())
|
|
| 77 |
DRAMA models are trained using Matryoshka Representation Learning ([MRL](https://github.com/RAIVNLab/MRL)) to support flexible dimensionality. Both queries and documents can be encoded into smaller dimensions, such as 256, using the following:
|
| 78 |
|
| 79 |
```python
|
| 80 |
-
query_embs = model.encode_queries(tokenizer, queries, dim=256)
|
| 81 |
-
doc_embs = model.encode_documents(tokenizer, documents, dim=256)
|
| 82 |
|
| 83 |
scores = query_embs @ doc_embs.T
|
| 84 |
print(scores.tolist())
|
|
@@ -101,8 +102,8 @@ documents = [
|
|
| 101 |
|
| 102 |
model = SentenceTransformer("facebook/drama-base", trust_remote_code=True)
|
| 103 |
|
| 104 |
-
query_embs = model.encode(queries, prompt_name="query")
|
| 105 |
-
doc_embs = model.encode(documents)
|
| 106 |
|
| 107 |
scores = model.similarity(query_embs, doc_embs)
|
| 108 |
print(scores.tolist())
|
|
@@ -128,8 +129,8 @@ documents = [
|
|
| 128 |
|
| 129 |
model = SentenceTransformer("facebook/drama-base", truncate_dim=256, trust_remote_code=True)
|
| 130 |
|
| 131 |
-
query_embs = model.encode(queries, prompt_name="query")
|
| 132 |
-
doc_embs = model.encode(documents)
|
| 133 |
|
| 134 |
scores = model.similarity(query_embs, doc_embs)
|
| 135 |
print(scores.tolist())
|
|
@@ -165,3 +166,26 @@ If you find our paper or models helpful, please consider cite as follows:
|
|
| 165 |
year={2025}
|
| 166 |
}
|
| 167 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 61 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 62 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).to(device)
|
| 63 |
+
use_nested = False
|
| 64 |
+
query_embs = model.encode_queries(tokenizer, queries, use_nested=use_nested)
|
| 65 |
+
doc_embs = model.encode_documents(tokenizer, documents, use_nested=use_nested)
|
| 66 |
|
|
|
|
|
|
|
| 67 |
|
| 68 |
scores = query_embs @ doc_embs.T
|
| 69 |
print(scores.tolist())
|
|
|
|
| 78 |
DRAMA models are trained using Matryoshka Representation Learning ([MRL](https://github.com/RAIVNLab/MRL)) to support flexible dimensionality. Both queries and documents can be encoded into smaller dimensions, such as 256, using the following:
|
| 79 |
|
| 80 |
```python
|
| 81 |
+
query_embs = model.encode_queries(tokenizer, queries, dim=256, use_nested=use_nested)
|
| 82 |
+
doc_embs = model.encode_documents(tokenizer, documents, dim=256, use_nested=use_nested)
|
| 83 |
|
| 84 |
scores = query_embs @ doc_embs.T
|
| 85 |
print(scores.tolist())
|
|
|
|
| 102 |
|
| 103 |
model = SentenceTransformer("facebook/drama-base", trust_remote_code=True)
|
| 104 |
|
| 105 |
+
query_embs = model.encode(queries, prompt_name="query", use_nested=use_nested)
|
| 106 |
+
doc_embs = model.encode(documents, use_nested=use_nested)
|
| 107 |
|
| 108 |
scores = model.similarity(query_embs, doc_embs)
|
| 109 |
print(scores.tolist())
|
|
|
|
| 129 |
|
| 130 |
model = SentenceTransformer("facebook/drama-base", truncate_dim=256, trust_remote_code=True)
|
| 131 |
|
| 132 |
+
query_embs = model.encode(queries, prompt_name="query", use_nested=use_nested)
|
| 133 |
+
doc_embs = model.encode(documents, use_nested=use_nested)
|
| 134 |
|
| 135 |
scores = model.similarity(query_embs, doc_embs)
|
| 136 |
print(scores.tolist())
|
|
|
|
| 166 |
year={2025}
|
| 167 |
}
|
| 168 |
```
|
| 169 |
+
|
| 170 |
+
## Efficient DRAMA
|
| 171 |
+
### Nested Tensors
|
| 172 |
+
[Nested Tensors](https://docs.pytorch.org/docs/stable/nested.html) provide a way to handle ragged-shaped data within a single tensor, allowing for efficient operations on such data.
|
| 173 |
+
They store data in a compact packed representation while offering a standard PyTorch tensor interface, making it easy to apply various
|
| 174 |
+
operations.
|
| 175 |
+
Nested Tensors are particularly advantageous for model deployments that perform inference on large batches of sequences with varying
|
| 176 |
+
lengths. Traditional tensors require padding all sequences in a batch to the same length, which can be inefficient, especially when
|
| 177 |
+
the batch includesmany short sequences and a single long sequence. Nested Tensors eliminate the need for padding, thus avoiding
|
| 178 |
+
unnecessary computation on extra pad tokens. This results in more efficient processing of batches with varying sequence lengths.
|
| 179 |
+
|
| 180 |
+
### Performance
|
| 181 |
+
Experiments have demonstrated a 1.7x to 2.3x (base,large and 1B) improvement in queries per second (QPS) for batch inference with sequences of varied lengths.
|
| 182 |
+
|
| 183 |
+
### Usage
|
| 184 |
+
To enable Nested Tensors, simply set the use_nested variable to true. This will activate the nested jagged tensors and allow you to
|
| 185 |
+
take advantage of efficient inference.
|
| 186 |
+
|
| 187 |
+
> Prerequisites Package versions as this code have been tested with these versions. Please use these or some latest versions to avoid compatibility issues.
|
| 188 |
+
|
| 189 |
+
>- Python: 3.12
|
| 190 |
+
>- Transformers: 4.51.1
|
| 191 |
+
>- PyTorch: 2.7.1
|
config.json
CHANGED
|
@@ -4,7 +4,7 @@
|
|
| 4 |
"DramaModel"
|
| 5 |
],
|
| 6 |
"auto_map": {
|
| 7 |
-
"AutoModel": "modeling_drama.
|
| 8 |
},
|
| 9 |
"attention_bias": false,
|
| 10 |
"attention_dropout": 0.0,
|
|
|
|
| 4 |
"DramaModel"
|
| 5 |
],
|
| 6 |
"auto_map": {
|
| 7 |
+
"AutoModel": "modeling_drama.DramaModelWrapper"
|
| 8 |
},
|
| 9 |
"attention_bias": false,
|
| 10 |
"attention_dropout": 0.0,
|
modeling_drama.py
CHANGED
|
@@ -1,166 +1,125 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
"""
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
"""
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
"""
|
| 18 |
-
|
| 19 |
-
"""
|
| 20 |
-
super().__init__(config)
|
| 21 |
-
for layer in self.layers:
|
| 22 |
-
layer.self_attn.is_causal = False
|
| 23 |
-
# query prefix
|
| 24 |
-
self.query_prefix = "Query: "
|
| 25 |
-
self.max_seq_len = 8192
|
| 26 |
-
self.hidden_size = config.hidden_size
|
| 27 |
-
|
| 28 |
-
def _update_causal_mask(
|
| 29 |
-
self,
|
| 30 |
-
attention_mask: torch.Tensor,
|
| 31 |
-
input_tensor: torch.Tensor,
|
| 32 |
-
cache_position: torch.Tensor,
|
| 33 |
-
past_seen_tokens=None,
|
| 34 |
-
output_attentions=False,
|
| 35 |
-
):
|
| 36 |
-
"""
|
| 37 |
-
Updates the causal mask for attention computations.
|
| 38 |
-
"""
|
| 39 |
-
if self.config._attn_implementation == "flash_attention_2":
|
| 40 |
-
if attention_mask is not None and (attention_mask == 0.0).any():
|
| 41 |
-
return attention_mask
|
| 42 |
-
return None
|
| 43 |
-
if attention_mask is None or attention_mask.dim() == 4:
|
| 44 |
-
return attention_mask
|
| 45 |
-
|
| 46 |
-
return AttentionMaskConverter._expand_mask(
|
| 47 |
-
mask=attention_mask,
|
| 48 |
-
dtype=input_tensor.dtype,
|
| 49 |
-
)
|
| 50 |
|
| 51 |
-
|
| 52 |
-
self, last_hidden_states: torch.Tensor, attention_mask: torch.Tensor
|
| 53 |
-
) -> torch.Tensor:
|
| 54 |
-
"""
|
| 55 |
-
Computes the average pooled representation of the last hidden states.
|
| 56 |
-
"""
|
| 57 |
-
last_hidden = last_hidden_states.masked_fill(
|
| 58 |
-
~attention_mask[..., None].bool(), 0.0
|
| 59 |
-
)
|
| 60 |
-
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 61 |
|
| 62 |
-
def _tokenize(
|
| 63 |
-
self,
|
| 64 |
-
tokenizer: PreTrainedTokenizer,
|
| 65 |
-
texts: list[str],
|
| 66 |
-
max_seq_len: int = None,
|
| 67 |
-
):
|
| 68 |
-
"""
|
| 69 |
-
Tokenizes input text sequences with optional sequence length restriction.
|
| 70 |
-
"""
|
| 71 |
-
if max_seq_len is None:
|
| 72 |
-
max_seq_len = self.max_seq_len
|
| 73 |
-
tokenized = tokenizer(
|
| 74 |
-
texts,
|
| 75 |
-
padding=True,
|
| 76 |
-
truncation=True,
|
| 77 |
-
max_length=max_seq_len,
|
| 78 |
-
return_tensors='pt',
|
| 79 |
-
).to(self.device)
|
| 80 |
-
return tokenized
|
| 81 |
-
|
| 82 |
-
def encode(self, input_ids, attention_mask, dim, *args, **kwargs):
|
| 83 |
-
"""
|
| 84 |
-
Pass through the model and compute normalized embeddings.
|
| 85 |
-
|
| 86 |
Args:
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
Returns:
|
| 92 |
-
torch.Tensor: Normalized output embeddings.
|
| 93 |
-
"""
|
| 94 |
-
outputs = self.forward(
|
| 95 |
-
input_ids, attention_mask, *args, **kwargs
|
| 96 |
-
)
|
| 97 |
-
embeddings = self._average_pool(
|
| 98 |
-
outputs.last_hidden_state[:, :, :dim], attention_mask
|
| 99 |
-
)
|
| 100 |
-
# normalize embeddings
|
| 101 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 102 |
-
return embeddings
|
| 103 |
-
|
| 104 |
-
def encode_queries(
|
| 105 |
-
self,
|
| 106 |
-
tokenizer: PreTrainedTokenizer,
|
| 107 |
-
queries: list[str],
|
| 108 |
-
max_seq_len: int = None,
|
| 109 |
-
dim: int = None,
|
| 110 |
-
):
|
| 111 |
-
"""
|
| 112 |
-
Encodes a list of queries into embeddings.
|
| 113 |
-
|
| 114 |
-
Args:
|
| 115 |
-
tokenizer (PreTrainedTokenizer): Tokenizer for text processing.
|
| 116 |
-
queries (list[str]): List of query texts.
|
| 117 |
-
max_seq_len (int, optional): Maximum sequence length.
|
| 118 |
-
dim (int, optional): Dimensionality for output embeddings.
|
| 119 |
-
|
| 120 |
-
Returns:
|
| 121 |
-
torch.Tensor: Encoded query embeddings in shape (num_queries, dim).
|
| 122 |
-
"""
|
| 123 |
-
if not queries:
|
| 124 |
-
raise ValueError("queries must not be empty.")
|
| 125 |
-
if not isinstance(queries, list) or not all(isinstance(q, str) for q in queries):
|
| 126 |
-
raise ValueError("queries must be a list of strings.")
|
| 127 |
-
if tokenizer is None:
|
| 128 |
-
raise ValueError("tokenizer must not be None.")
|
| 129 |
-
if dim is not None and (dim < 1 or dim > self.hidden_size):
|
| 130 |
-
raise ValueError(f"dim must be in range [1, {self.hidden_size}].")
|
| 131 |
-
queries = [self.query_prefix + query for query in queries]
|
| 132 |
-
tokenized_queries = self._tokenize(tokenizer, queries, max_seq_len)
|
| 133 |
-
embeddings = self.encode(**tokenized_queries, dim=dim)
|
| 134 |
-
return embeddings
|
| 135 |
-
|
| 136 |
-
def encode_documents(
|
| 137 |
-
self,
|
| 138 |
-
tokenizer: PreTrainedTokenizer,
|
| 139 |
-
documents: list[str],
|
| 140 |
-
max_seq_len: int = None,
|
| 141 |
-
dim: int = None,
|
| 142 |
-
):
|
| 143 |
-
"""
|
| 144 |
-
Encodes a list of documents into embeddings.
|
| 145 |
-
|
| 146 |
-
Args:
|
| 147 |
-
tokenizer (PreTrainedTokenizer): Tokenizer for text processing.
|
| 148 |
-
documents (list[str]): List of document texts.
|
| 149 |
-
max_seq_len (int, optional): Maximum sequence length.
|
| 150 |
-
dim (int, optional): Dimensionality for output embeddings.
|
| 151 |
-
|
| 152 |
Returns:
|
| 153 |
-
|
| 154 |
"""
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
if not
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import warnings
|
| 3 |
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
def _check_torch_version():
|
| 6 |
+
"""Check if PyTorch version is >= 2.7.1"""
|
| 7 |
+
try:
|
| 8 |
+
import torch
|
| 9 |
|
| 10 |
+
# Simple version comparison
|
| 11 |
+
version_str = torch.__version__.split("+")[0] # Remove any suffixes like +cu118
|
| 12 |
+
version_parts = version_str.split(".")
|
| 13 |
|
| 14 |
+
# Compare major version
|
| 15 |
+
if int(version_parts[0]) > 2:
|
| 16 |
+
return True
|
| 17 |
+
# Compare minor version
|
| 18 |
+
elif int(version_parts[0]) == 2 and int(version_parts[1]) > 7:
|
| 19 |
+
return True
|
| 20 |
+
# Compare patch version
|
| 21 |
+
elif (
|
| 22 |
+
int(version_parts[0]) == 2
|
| 23 |
+
and int(version_parts[1]) == 7
|
| 24 |
+
and int(version_parts[2]) >= 1
|
| 25 |
+
):
|
| 26 |
+
return True
|
| 27 |
+
|
| 28 |
+
return False
|
| 29 |
+
except (ImportError, AttributeError, IndexError, ValueError):
|
| 30 |
+
return False
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def _check_transformers_version():
|
| 34 |
+
"""Check if Transformers version is >= 4.51.1"""
|
| 35 |
+
try:
|
| 36 |
+
import transformers
|
| 37 |
+
|
| 38 |
+
# Simple version comparison
|
| 39 |
+
version_str = transformers.__version__.split("+")[0] # Remove any suffixes
|
| 40 |
+
version_parts = version_str.split(".")
|
| 41 |
+
|
| 42 |
+
# Compare major version
|
| 43 |
+
if int(version_parts[0]) > 4:
|
| 44 |
+
return True
|
| 45 |
+
# Compare minor version
|
| 46 |
+
elif int(version_parts[0]) == 4 and int(version_parts[1]) > 51:
|
| 47 |
+
return True
|
| 48 |
+
# Compare patch version
|
| 49 |
+
elif (
|
| 50 |
+
int(version_parts[0]) == 4
|
| 51 |
+
and int(version_parts[1]) == 51
|
| 52 |
+
and int(version_parts[2]) >= 1
|
| 53 |
+
):
|
| 54 |
+
return True
|
| 55 |
+
|
| 56 |
+
return False
|
| 57 |
+
except (ImportError, AttributeError, IndexError, ValueError):
|
| 58 |
+
return False
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class DramaModelWrapper:
|
| 62 |
"""
|
| 63 |
+
Factory class for DramaModel that returns the appropriate implementation
|
| 64 |
+
based on the Python version.
|
| 65 |
+
|
| 66 |
+
If Python version >= 3.12, returns an instance of the nested tensor implementation.
|
| 67 |
+
Otherwise, returns an instance of the non-nested implementation.
|
| 68 |
"""
|
| 69 |
|
| 70 |
+
@classmethod
|
| 71 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 72 |
"""
|
| 73 |
+
Instantiate a pretrained model from a pre-trained model configuration.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
This method is required by the transformers library's auto model loading mechanism.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
Args:
|
| 78 |
+
pretrained_model_name_or_path: Path to the pretrained model or its name
|
| 79 |
+
*model_args: Additional positional arguments to pass to the implementation
|
| 80 |
+
**kwargs: Additional keyword arguments to pass to the implementation
|
| 81 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
Returns:
|
| 83 |
+
An instance of the appropriate DramaModel implementation.
|
| 84 |
"""
|
| 85 |
+
# Check Python version
|
| 86 |
+
use_nested = sys.version_info >= (3, 15)
|
| 87 |
+
if not use_nested:
|
| 88 |
+
warnings.warn(
|
| 89 |
+
"Python version < 3.12 detected. Using non-nested implementation."
|
| 90 |
+
)
|
| 91 |
+
# For Python versions below 3.12, use the non-nested implementation
|
| 92 |
+
from .modeling_drama_non_nested import DramaModel as NonNestedDramaModel
|
| 93 |
+
|
| 94 |
+
return NonNestedDramaModel.from_pretrained(
|
| 95 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Check PyTorch version
|
| 99 |
+
if not _check_torch_version():
|
| 100 |
+
warnings.warn(
|
| 101 |
+
"PyTorch version < 2.7.1 detected. Falling back to non-nested implementation."
|
| 102 |
+
)
|
| 103 |
+
from .modeling_drama_non_nested import DramaModel as NonNestedDramaModel
|
| 104 |
|
| 105 |
+
return NonNestedDramaModel.from_pretrained(
|
| 106 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# Check Transformers version
|
| 110 |
+
if not _check_transformers_version():
|
| 111 |
+
warnings.warn(
|
| 112 |
+
"Transformers version < 4.51.1 detected. Falling back to non-nested implementation."
|
| 113 |
+
)
|
| 114 |
+
from .modeling_drama_non_nested import DramaModel as NonNestedDramaModel
|
| 115 |
+
|
| 116 |
+
return NonNestedDramaModel.from_pretrained(
|
| 117 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Use the nested tensor implementation if all requirements are met
|
| 121 |
+
from .modeling_drama_nested import DramaModel as NestedDramaModel
|
| 122 |
+
|
| 123 |
+
return NestedDramaModel.from_pretrained(
|
| 124 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 125 |
+
)
|
modeling_drama_nested.py
ADDED
|
@@ -0,0 +1,639 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from torch.nested._internal.nested_tensor import nested_from_padded
|
| 7 |
+
|
| 8 |
+
from transformers import (
|
| 9 |
+
LlamaConfig,
|
| 10 |
+
LlamaModel,
|
| 11 |
+
LlamaPreTrainedModel,
|
| 12 |
+
PreTrainedTokenizer,
|
| 13 |
+
)
|
| 14 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 15 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 16 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 17 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 18 |
+
from transformers.models.llama.modeling_llama import (
|
| 19 |
+
LlamaAttention,
|
| 20 |
+
LlamaDecoderLayer,
|
| 21 |
+
LlamaMLP,
|
| 22 |
+
LlamaRMSNorm,
|
| 23 |
+
LlamaRotaryEmbedding,
|
| 24 |
+
rotate_half,
|
| 25 |
+
)
|
| 26 |
+
from transformers.processing_utils import Unpack
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class ModifiedLlamaAttention(LlamaAttention):
|
| 30 |
+
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
| 31 |
+
super().__init__(*args, **kwargs)
|
| 32 |
+
self.is_causal = False
|
| 33 |
+
|
| 34 |
+
def forward(
|
| 35 |
+
self,
|
| 36 |
+
hidden_states: torch.Tensor,
|
| 37 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 38 |
+
attention_mask: Optional[torch.Tensor],
|
| 39 |
+
past_key_value: Optional[Cache] = None,
|
| 40 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 41 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 42 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 43 |
+
input_shape = hidden_states.shape[:-1]
|
| 44 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 45 |
+
|
| 46 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 47 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 48 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 49 |
+
|
| 50 |
+
cos, sin = position_embeddings
|
| 51 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 52 |
+
query_states, key_states, cos, sin
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
if past_key_value is not None:
|
| 56 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 57 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 58 |
+
key_states, value_states = past_key_value.update(
|
| 59 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
if self.config._attn_implementation != "eager":
|
| 63 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get(
|
| 64 |
+
"output_attentions", False
|
| 65 |
+
):
|
| 66 |
+
warnings.warn(
|
| 67 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 68 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
attn_output, attn_weights = sdpa_attention_forward(
|
| 72 |
+
self,
|
| 73 |
+
query_states,
|
| 74 |
+
key_states,
|
| 75 |
+
value_states,
|
| 76 |
+
attention_mask,
|
| 77 |
+
dropout=0.0,
|
| 78 |
+
scaling=self.scaling,
|
| 79 |
+
is_causal=False,
|
| 80 |
+
**kwargs,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 84 |
+
attn_output = self.o_proj(attn_output)
|
| 85 |
+
return attn_output, attn_weights
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def sdpa_attention_forward(
|
| 89 |
+
module: torch.nn.Module,
|
| 90 |
+
query: torch.Tensor,
|
| 91 |
+
key: torch.Tensor,
|
| 92 |
+
value: torch.Tensor,
|
| 93 |
+
attention_mask: torch.Tensor,
|
| 94 |
+
dropout: float = 0.0,
|
| 95 |
+
scaling: Optional[float] = None,
|
| 96 |
+
is_causal: Optional[bool] = None,
|
| 97 |
+
**kwargs: Any,
|
| 98 |
+
) -> Tuple[torch.Tensor, None]:
|
| 99 |
+
if hasattr(module, "num_key_value_groups"):
|
| 100 |
+
if key.is_nested:
|
| 101 |
+
key = repeat_jagged_kv(key, module.num_key_value_groups)
|
| 102 |
+
value = repeat_jagged_kv(value, module.num_key_value_groups)
|
| 103 |
+
else:
|
| 104 |
+
key = repeat_dense_kv(key, module.num_key_value_groups)
|
| 105 |
+
value = repeat_dense_kv(value, module.num_key_value_groups)
|
| 106 |
+
|
| 107 |
+
causal_mask = attention_mask
|
| 108 |
+
if attention_mask is not None and causal_mask.ndim == 4:
|
| 109 |
+
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
| 110 |
+
|
| 111 |
+
# SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
|
| 112 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 113 |
+
query = query.contiguous()
|
| 114 |
+
key = key.contiguous()
|
| 115 |
+
value = value.contiguous()
|
| 116 |
+
|
| 117 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 118 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 119 |
+
# Note that it is important to check first for the shape, otherwise compile will fail with `argument 'is_causal' must be bool, not SymBool`
|
| 120 |
+
if is_causal is None:
|
| 121 |
+
is_causal = query.shape[2] > 1 and causal_mask is None
|
| 122 |
+
|
| 123 |
+
# Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor.
|
| 124 |
+
# We convert it to a bool for the SDPA kernel that only accepts bools.
|
| 125 |
+
if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor):
|
| 126 |
+
is_causal = is_causal.item()
|
| 127 |
+
|
| 128 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 129 |
+
query,
|
| 130 |
+
key,
|
| 131 |
+
value,
|
| 132 |
+
attn_mask=causal_mask,
|
| 133 |
+
dropout_p=dropout,
|
| 134 |
+
scale=scaling,
|
| 135 |
+
is_causal=is_causal,
|
| 136 |
+
)
|
| 137 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 138 |
+
|
| 139 |
+
return attn_output, None
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def repeat_jagged_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 143 |
+
"""
|
| 144 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 145 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 146 |
+
"""
|
| 147 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 148 |
+
expand_shape = (batch, num_key_value_heads, -1, n_rep, head_dim)
|
| 149 |
+
if n_rep == 1:
|
| 150 |
+
return hidden_states
|
| 151 |
+
hidden_states = (
|
| 152 |
+
hidden_states.unsqueeze(3)
|
| 153 |
+
.expand(expand_shape)
|
| 154 |
+
.transpose(1, 2)
|
| 155 |
+
.flatten(2, 3)
|
| 156 |
+
.transpose(1, 2)
|
| 157 |
+
)
|
| 158 |
+
return hidden_states
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def repeat_dense_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 162 |
+
"""
|
| 163 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 164 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 165 |
+
"""
|
| 166 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 167 |
+
if n_rep == 1:
|
| 168 |
+
return hidden_states
|
| 169 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 170 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
| 171 |
+
)
|
| 172 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def apply_rotary_pos_emb(
|
| 176 |
+
q: torch.Tensor,
|
| 177 |
+
k: torch.Tensor,
|
| 178 |
+
cos: torch.Tensor,
|
| 179 |
+
sin: torch.Tensor,
|
| 180 |
+
unsqueeze_dim: int = 1,
|
| 181 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 182 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
q (`torch.Tensor`): The query tensor.
|
| 186 |
+
k (`torch.Tensor`): The key tensor.
|
| 187 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 188 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 189 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 190 |
+
Deprecated and unused.
|
| 191 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 192 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 193 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 194 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 195 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 196 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 197 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 198 |
+
Returns:
|
| 199 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 200 |
+
"""
|
| 201 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 202 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 203 |
+
if q.is_nested and k.is_nested:
|
| 204 |
+
if q.layout != torch.jagged:
|
| 205 |
+
raise NotImplementedError(f"Unsupported layout: {q.layout}")
|
| 206 |
+
if k.layout != torch.jagged:
|
| 207 |
+
raise NotImplementedError(f"Unsupported layout: {k.layout}")
|
| 208 |
+
return _jagged_tensor_forward(q, k, cos, sin)
|
| 209 |
+
else:
|
| 210 |
+
return _padded_tensor_forward(q, k, cos, sin)
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def _jagged_tensor_forward(
|
| 214 |
+
q: torch.Tensor,
|
| 215 |
+
k: torch.Tensor,
|
| 216 |
+
cos: torch.Tensor,
|
| 217 |
+
sin: torch.Tensor,
|
| 218 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 219 |
+
q_dense = q.to_padded_tensor(0.0)
|
| 220 |
+
k_dense = k.to_padded_tensor(0.0)
|
| 221 |
+
q_dense_embed = (q_dense * cos) + (rotate_half(q_dense) * sin)
|
| 222 |
+
k_dense_embed = (k_dense * cos) + (rotate_half(k_dense) * sin)
|
| 223 |
+
q_jagged_embed = convert_dense_to_jagged(q, q_dense_embed)
|
| 224 |
+
k_jagged_embed = convert_dense_to_jagged(k, k_dense_embed)
|
| 225 |
+
return q_jagged_embed, k_jagged_embed
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def _padded_tensor_forward(
|
| 229 |
+
q: torch.Tensor,
|
| 230 |
+
k: torch.Tensor,
|
| 231 |
+
cos: torch.Tensor,
|
| 232 |
+
sin: torch.Tensor,
|
| 233 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 234 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 235 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 236 |
+
return q_embed, k_embed
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def convert_dense_to_jagged(nested_q: torch.Tensor, q: torch.Tensor) -> torch.Tensor:
|
| 240 |
+
padded_max_S = nested_q._get_max_seqlen()
|
| 241 |
+
total_L = nested_q._values.shape[nested_q._ragged_idx - 1]
|
| 242 |
+
if padded_max_S is None:
|
| 243 |
+
# use upper bound on max seqlen if it's not present
|
| 244 |
+
padded_max_S = total_L
|
| 245 |
+
|
| 246 |
+
# convert dense tensor -> jagged
|
| 247 |
+
q = q.expand(
|
| 248 |
+
[
|
| 249 |
+
x if i != nested_q._ragged_idx else padded_max_S
|
| 250 |
+
for i, x in enumerate(q.shape)
|
| 251 |
+
]
|
| 252 |
+
)
|
| 253 |
+
nested_result = nested_from_padded(
|
| 254 |
+
q,
|
| 255 |
+
offsets=nested_q._offsets,
|
| 256 |
+
ragged_idx=nested_q._ragged_idx,
|
| 257 |
+
sum_S=total_L,
|
| 258 |
+
min_seqlen=nested_q._get_min_seqlen(),
|
| 259 |
+
max_seqlen=padded_max_S,
|
| 260 |
+
)
|
| 261 |
+
return nested_result
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
class ModifiedLlamaDecoderLayer(LlamaDecoderLayer):
|
| 265 |
+
def __init__(self, config: LlamaConfig, layer_idx: int) -> None:
|
| 266 |
+
nn.Module.__init__(self)
|
| 267 |
+
self.hidden_size: int = config.hidden_size
|
| 268 |
+
|
| 269 |
+
self.self_attn = ModifiedLlamaAttention(config=config, layer_idx=layer_idx)
|
| 270 |
+
|
| 271 |
+
self.mlp = LlamaMLP(config)
|
| 272 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 273 |
+
self.post_attention_layernorm = LlamaRMSNorm(
|
| 274 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class LlamaBiModel(LlamaModel):
|
| 279 |
+
def __init__(self, config: LlamaConfig) -> None:
|
| 280 |
+
LlamaPreTrainedModel.__init__(self, config)
|
| 281 |
+
self.padding_idx: int = config.pad_token_id
|
| 282 |
+
self.vocab_size: int = config.vocab_size
|
| 283 |
+
|
| 284 |
+
self.embed_tokens = nn.Embedding(
|
| 285 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
| 286 |
+
)
|
| 287 |
+
self.layers = nn.ModuleList(
|
| 288 |
+
[
|
| 289 |
+
ModifiedLlamaDecoderLayer(config, layer_idx)
|
| 290 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 291 |
+
]
|
| 292 |
+
)
|
| 293 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 294 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
| 295 |
+
self.gradient_checkpointing = False
|
| 296 |
+
|
| 297 |
+
# Initialize weights and apply final processing
|
| 298 |
+
self.post_init()
|
| 299 |
+
|
| 300 |
+
def _update_causal_mask(
|
| 301 |
+
self,
|
| 302 |
+
attention_mask: torch.Tensor,
|
| 303 |
+
input_tensor: torch.Tensor,
|
| 304 |
+
cache_position: torch.Tensor,
|
| 305 |
+
past_seen_tokens=None,
|
| 306 |
+
output_attentions=False,
|
| 307 |
+
):
|
| 308 |
+
"""
|
| 309 |
+
Updates the causal mask for attention computations.
|
| 310 |
+
"""
|
| 311 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 312 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
| 313 |
+
return attention_mask
|
| 314 |
+
return None
|
| 315 |
+
if attention_mask is None or attention_mask.dim() == 4:
|
| 316 |
+
return attention_mask
|
| 317 |
+
|
| 318 |
+
return AttentionMaskConverter._expand_mask(
|
| 319 |
+
mask=attention_mask,
|
| 320 |
+
dtype=input_tensor.dtype,
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
def forward(
|
| 324 |
+
self,
|
| 325 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 326 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 327 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 328 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 329 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 330 |
+
use_cache: Optional[bool] = None,
|
| 331 |
+
output_attentions: Optional[bool] = None,
|
| 332 |
+
output_hidden_states: Optional[bool] = None,
|
| 333 |
+
return_dict: Optional[bool] = None,
|
| 334 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 335 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
|
| 336 |
+
output_attentions = (
|
| 337 |
+
output_attentions
|
| 338 |
+
if output_attentions is not None
|
| 339 |
+
else self.config.output_attentions
|
| 340 |
+
)
|
| 341 |
+
output_hidden_states = (
|
| 342 |
+
output_hidden_states
|
| 343 |
+
if output_hidden_states is not None
|
| 344 |
+
else self.config.output_hidden_states
|
| 345 |
+
)
|
| 346 |
+
# use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 347 |
+
use_cache = False
|
| 348 |
+
return_dict = (
|
| 349 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 353 |
+
raise ValueError(
|
| 354 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 355 |
+
)
|
| 356 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 357 |
+
warnings.warn(
|
| 358 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.",
|
| 359 |
+
DeprecationWarning,
|
| 360 |
+
stacklevel=2,
|
| 361 |
+
)
|
| 362 |
+
use_cache = False
|
| 363 |
+
|
| 364 |
+
if inputs_embeds is None:
|
| 365 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 366 |
+
|
| 367 |
+
return_legacy_cache = False
|
| 368 |
+
if (
|
| 369 |
+
use_cache and not isinstance(past_key_values, Cache) and not self.training
|
| 370 |
+
): # kept for BC (non `Cache` `past_key_values` inputs)
|
| 371 |
+
return_legacy_cache = True
|
| 372 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 373 |
+
warnings.warn(
|
| 374 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
| 375 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)",
|
| 376 |
+
DeprecationWarning,
|
| 377 |
+
stacklevel=2,
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
if cache_position is None:
|
| 381 |
+
past_seen_tokens = (
|
| 382 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 383 |
+
)
|
| 384 |
+
if inputs_embeds.is_nested:
|
| 385 |
+
seq_len = inputs_embeds._get_max_seqlen()
|
| 386 |
+
else:
|
| 387 |
+
seq_len = inputs_embeds.shape[1]
|
| 388 |
+
cache_position = torch.arange(
|
| 389 |
+
past_seen_tokens,
|
| 390 |
+
past_seen_tokens + seq_len,
|
| 391 |
+
device=inputs_embeds.device,
|
| 392 |
+
)
|
| 393 |
+
if position_ids is None:
|
| 394 |
+
position_ids = cache_position.unsqueeze(0)
|
| 395 |
+
if not inputs_embeds.is_nested:
|
| 396 |
+
causal_mask = self._update_causal_mask(
|
| 397 |
+
attention_mask,
|
| 398 |
+
inputs_embeds,
|
| 399 |
+
cache_position,
|
| 400 |
+
past_key_values,
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
else:
|
| 404 |
+
causal_mask = None
|
| 405 |
+
hidden_states = inputs_embeds
|
| 406 |
+
|
| 407 |
+
# create position embeddings to be shared across the decoder layers
|
| 408 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 409 |
+
|
| 410 |
+
# decoder layers
|
| 411 |
+
all_hidden_states = () if output_hidden_states else None
|
| 412 |
+
all_self_attns = () if output_attentions else None
|
| 413 |
+
next_decoder_cache = None
|
| 414 |
+
|
| 415 |
+
for decoder_layer in self.layers:
|
| 416 |
+
if output_hidden_states:
|
| 417 |
+
all_hidden_states += (hidden_states,)
|
| 418 |
+
|
| 419 |
+
if self.gradient_checkpointing and self.training:
|
| 420 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 421 |
+
decoder_layer.__call__,
|
| 422 |
+
hidden_states,
|
| 423 |
+
causal_mask,
|
| 424 |
+
position_ids,
|
| 425 |
+
past_key_values,
|
| 426 |
+
output_attentions,
|
| 427 |
+
use_cache,
|
| 428 |
+
cache_position,
|
| 429 |
+
position_embeddings,
|
| 430 |
+
)
|
| 431 |
+
else:
|
| 432 |
+
layer_outputs = decoder_layer(
|
| 433 |
+
hidden_states,
|
| 434 |
+
attention_mask=causal_mask,
|
| 435 |
+
position_ids=position_ids,
|
| 436 |
+
past_key_value=past_key_values,
|
| 437 |
+
output_attentions=output_attentions,
|
| 438 |
+
use_cache=use_cache,
|
| 439 |
+
cache_position=cache_position,
|
| 440 |
+
position_embeddings=position_embeddings,
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
hidden_states = layer_outputs[0]
|
| 444 |
+
|
| 445 |
+
if use_cache:
|
| 446 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 447 |
+
|
| 448 |
+
if output_attentions:
|
| 449 |
+
all_self_attns += (layer_outputs[1],)
|
| 450 |
+
|
| 451 |
+
hidden_states = self.norm(hidden_states)
|
| 452 |
+
|
| 453 |
+
# add hidden states from the last decoder layer
|
| 454 |
+
if output_hidden_states:
|
| 455 |
+
all_hidden_states += (hidden_states,)
|
| 456 |
+
|
| 457 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 458 |
+
if return_legacy_cache:
|
| 459 |
+
next_cache = next_cache.to_legacy_cache()
|
| 460 |
+
|
| 461 |
+
if not return_dict:
|
| 462 |
+
return tuple(
|
| 463 |
+
v
|
| 464 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 465 |
+
if v is not None
|
| 466 |
+
)
|
| 467 |
+
return BaseModelOutputWithPast(
|
| 468 |
+
last_hidden_state=hidden_states,
|
| 469 |
+
past_key_values=next_cache,
|
| 470 |
+
hidden_states=all_hidden_states,
|
| 471 |
+
attentions=all_self_attns,
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
class DramaModel(LlamaBiModel):
|
| 476 |
+
"""
|
| 477 |
+
DramaModel is a modified version of the LlamaModel that supports bi-directional attention
|
| 478 |
+
and provides query and document encoding functionalities.
|
| 479 |
+
"""
|
| 480 |
+
|
| 481 |
+
def __init__(self, config: LlamaConfig):
|
| 482 |
+
"""
|
| 483 |
+
Initializes the DramaModel by disabling causal masking in self-attention layers.
|
| 484 |
+
"""
|
| 485 |
+
super().__init__(config)
|
| 486 |
+
for layer in self.layers:
|
| 487 |
+
layer.self_attn.is_causal = False
|
| 488 |
+
# query prefix
|
| 489 |
+
self.query_prefix = "Query: "
|
| 490 |
+
self.max_seq_len = 8192
|
| 491 |
+
self.hidden_size = config.hidden_size
|
| 492 |
+
|
| 493 |
+
def _average_pool(
|
| 494 |
+
self, last_hidden_states: torch.Tensor, attention_mask: torch.Tensor
|
| 495 |
+
) -> torch.Tensor:
|
| 496 |
+
"""
|
| 497 |
+
Computes the average pooled representation of the last hidden states.
|
| 498 |
+
"""
|
| 499 |
+
last_hidden = last_hidden_states.masked_fill(
|
| 500 |
+
~attention_mask[..., None].bool(), 0.0
|
| 501 |
+
)
|
| 502 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 503 |
+
|
| 504 |
+
def _tokenize(
|
| 505 |
+
self,
|
| 506 |
+
tokenizer: PreTrainedTokenizer,
|
| 507 |
+
texts: list[str],
|
| 508 |
+
max_seq_len: int = None,
|
| 509 |
+
use_nested: bool = False,
|
| 510 |
+
):
|
| 511 |
+
"""
|
| 512 |
+
Tokenizes input text sequences with optional sequence length restriction.
|
| 513 |
+
"""
|
| 514 |
+
if max_seq_len is None:
|
| 515 |
+
max_seq_len = self.max_seq_len
|
| 516 |
+
if use_nested:
|
| 517 |
+
tokenized = tokenizer(
|
| 518 |
+
texts,
|
| 519 |
+
truncation=True,
|
| 520 |
+
max_length=max_seq_len,
|
| 521 |
+
return_length=True,
|
| 522 |
+
)
|
| 523 |
+
tokenized.input_ids = torch.nested.nested_tensor(
|
| 524 |
+
tokenized.input_ids, layout=torch.jagged
|
| 525 |
+
).to(self.device)
|
| 526 |
+
tokenized.attention_mask = None
|
| 527 |
+
else:
|
| 528 |
+
tokenized = tokenizer(
|
| 529 |
+
texts,
|
| 530 |
+
padding=True,
|
| 531 |
+
truncation=True,
|
| 532 |
+
max_length=max_seq_len,
|
| 533 |
+
return_tensors="pt",
|
| 534 |
+
).to(self.device)
|
| 535 |
+
tokenizer_ouput = {}
|
| 536 |
+
tokenizer_ouput["input_ids"] = tokenized.input_ids
|
| 537 |
+
tokenizer_ouput["attention_mask"] = tokenized.attention_mask
|
| 538 |
+
return tokenizer_ouput
|
| 539 |
+
|
| 540 |
+
def encode(self, input_ids, attention_mask, dim, *args, **kwargs):
|
| 541 |
+
"""
|
| 542 |
+
Pass through the model and compute normalized embeddings.
|
| 543 |
+
|
| 544 |
+
Args:
|
| 545 |
+
input_ids (torch.Tensor): Input token IDs.
|
| 546 |
+
attention_mask (torch.Tensor): Attention mask tensor.
|
| 547 |
+
dim (int): Dimensionality for output embeddings.
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
torch.Tensor: Normalized output embeddings.
|
| 551 |
+
"""
|
| 552 |
+
|
| 553 |
+
outputs = self.forward(
|
| 554 |
+
input_ids, attention_mask, *args, **kwargs
|
| 555 |
+
).last_hidden_state
|
| 556 |
+
if not outputs.is_nested:
|
| 557 |
+
if dim is not None:
|
| 558 |
+
outputs = outputs[:, :, :dim]
|
| 559 |
+
embeddings = self._average_pool(outputs, attention_mask)
|
| 560 |
+
else:
|
| 561 |
+
if dim is not None:
|
| 562 |
+
outputs, _ = outputs.split_with_sizes(
|
| 563 |
+
split_sizes=[dim, outputs.shape[-1] - dim], dim=-1
|
| 564 |
+
)
|
| 565 |
+
embeddings = outputs.sum(dim=-2)
|
| 566 |
+
# normalize embeddings
|
| 567 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 568 |
+
return embeddings
|
| 569 |
+
|
| 570 |
+
def encode_queries(
|
| 571 |
+
self,
|
| 572 |
+
tokenizer: PreTrainedTokenizer,
|
| 573 |
+
queries: list[str],
|
| 574 |
+
max_seq_len: int = None,
|
| 575 |
+
dim: int = None,
|
| 576 |
+
use_nested: bool = False,
|
| 577 |
+
):
|
| 578 |
+
"""
|
| 579 |
+
Encodes a list of queries into embeddings.
|
| 580 |
+
|
| 581 |
+
Args:
|
| 582 |
+
tokenizer (PreTrainedTokenizer): Tokenizer for text processing.
|
| 583 |
+
queries (list[str]): List of query texts.
|
| 584 |
+
max_seq_len (int, optional): Maximum sequence length.
|
| 585 |
+
dim (int, optional): Dimensionality for output embeddings.
|
| 586 |
+
|
| 587 |
+
Returns:
|
| 588 |
+
torch.Tensor: Encoded query embeddings in shape (num_queries, dim).
|
| 589 |
+
"""
|
| 590 |
+
if not queries:
|
| 591 |
+
raise ValueError("queries must not be empty.")
|
| 592 |
+
if not isinstance(queries, list) or not all(
|
| 593 |
+
isinstance(q, str) for q in queries
|
| 594 |
+
):
|
| 595 |
+
raise ValueError("queries must be a list of strings.")
|
| 596 |
+
if tokenizer is None:
|
| 597 |
+
raise ValueError("tokenizer must not be None.")
|
| 598 |
+
if dim is not None and (dim < 1 or dim > self.hidden_size):
|
| 599 |
+
raise ValueError(f"dim must be in range [1, {self.hidden_size}].")
|
| 600 |
+
queries = [self.query_prefix + query for query in queries]
|
| 601 |
+
tokenized_queries = self._tokenize(tokenizer, queries, max_seq_len, use_nested)
|
| 602 |
+
embeddings = self.encode(**tokenized_queries, dim=dim)
|
| 603 |
+
return embeddings
|
| 604 |
+
|
| 605 |
+
def encode_documents(
|
| 606 |
+
self,
|
| 607 |
+
tokenizer: PreTrainedTokenizer,
|
| 608 |
+
documents: list[str],
|
| 609 |
+
max_seq_len: int = None,
|
| 610 |
+
dim: int = None,
|
| 611 |
+
use_nested: bool = False,
|
| 612 |
+
):
|
| 613 |
+
"""
|
| 614 |
+
Encodes a list of documents into embeddings.
|
| 615 |
+
|
| 616 |
+
Args:
|
| 617 |
+
tokenizer (PreTrainedTokenizer): Tokenizer for text processing.
|
| 618 |
+
documents (list[str]): List of document texts.
|
| 619 |
+
max_seq_len (int, optional): Maximum sequence length.
|
| 620 |
+
dim (int, optional): Dimensionality for output embeddings.
|
| 621 |
+
|
| 622 |
+
Returns:
|
| 623 |
+
torch.Tensor: Encoded document embeddings in shape (num_documents, dim).
|
| 624 |
+
"""
|
| 625 |
+
if not documents:
|
| 626 |
+
raise ValueError("documents must not be empty.")
|
| 627 |
+
if not isinstance(documents, list) or not all(
|
| 628 |
+
isinstance(d, str) for d in documents
|
| 629 |
+
):
|
| 630 |
+
raise ValueError("documents must be a list of strings.")
|
| 631 |
+
if tokenizer is None:
|
| 632 |
+
raise ValueError("tokenizer must not be None.")
|
| 633 |
+
if dim is not None and (dim < 1 or dim > self.hidden_size):
|
| 634 |
+
raise ValueError(f"dim must be in range [1, {self.hidden_size}].")
|
| 635 |
+
tokenized_documents = self._tokenize(
|
| 636 |
+
tokenizer, documents, max_seq_len, use_nested
|
| 637 |
+
)
|
| 638 |
+
embeddings = self.encode(**tokenized_documents, dim=dim)
|
| 639 |
+
return embeddings
|
modeling_drama_non_nested.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import warnings
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
from transformers import LlamaConfig, LlamaModel, PreTrainedTokenizer
|
| 9 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class DramaModel(LlamaModel):
|
| 13 |
+
"""
|
| 14 |
+
DramaModel is a modified version of the LlamaModel that supports bi-directional attention
|
| 15 |
+
and provides query and document encoding functionalities.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, config: LlamaConfig):
|
| 19 |
+
"""
|
| 20 |
+
Initializes the DramaModel by disabling causal masking in self-attention layers.
|
| 21 |
+
"""
|
| 22 |
+
super().__init__(config)
|
| 23 |
+
for layer in self.layers:
|
| 24 |
+
layer.self_attn.is_causal = False
|
| 25 |
+
# query prefix
|
| 26 |
+
self.query_prefix = "Query: "
|
| 27 |
+
self.max_seq_len = 8192
|
| 28 |
+
self.hidden_size = config.hidden_size
|
| 29 |
+
|
| 30 |
+
def _update_causal_mask(
|
| 31 |
+
self,
|
| 32 |
+
attention_mask: torch.Tensor,
|
| 33 |
+
input_tensor: torch.Tensor,
|
| 34 |
+
cache_position: torch.Tensor,
|
| 35 |
+
past_seen_tokens=None,
|
| 36 |
+
output_attentions=False,
|
| 37 |
+
):
|
| 38 |
+
"""
|
| 39 |
+
Updates the causal mask for attention computations.
|
| 40 |
+
"""
|
| 41 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 42 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
| 43 |
+
return attention_mask
|
| 44 |
+
return None
|
| 45 |
+
if attention_mask is None or attention_mask.dim() == 4:
|
| 46 |
+
return attention_mask
|
| 47 |
+
|
| 48 |
+
return AttentionMaskConverter._expand_mask(
|
| 49 |
+
mask=attention_mask,
|
| 50 |
+
dtype=input_tensor.dtype,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def _average_pool(
|
| 54 |
+
self, last_hidden_states: torch.Tensor, attention_mask: torch.Tensor
|
| 55 |
+
) -> torch.Tensor:
|
| 56 |
+
"""
|
| 57 |
+
Computes the average pooled representation of the last hidden states.
|
| 58 |
+
"""
|
| 59 |
+
last_hidden = last_hidden_states.masked_fill(
|
| 60 |
+
~attention_mask[..., None].bool(), 0.0
|
| 61 |
+
)
|
| 62 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 63 |
+
|
| 64 |
+
def _tokenize(
|
| 65 |
+
self,
|
| 66 |
+
tokenizer: PreTrainedTokenizer,
|
| 67 |
+
texts: list[str],
|
| 68 |
+
max_seq_len: int = None,
|
| 69 |
+
use_nested: bool = False, # Added for API compatibility with nested version
|
| 70 |
+
):
|
| 71 |
+
"""
|
| 72 |
+
Tokenizes input text sequences with optional sequence length restriction.
|
| 73 |
+
"""
|
| 74 |
+
if max_seq_len is None:
|
| 75 |
+
max_seq_len = self.max_seq_len
|
| 76 |
+
tokenized = tokenizer(
|
| 77 |
+
texts,
|
| 78 |
+
padding=True,
|
| 79 |
+
truncation=True,
|
| 80 |
+
max_length=max_seq_len,
|
| 81 |
+
return_tensors="pt",
|
| 82 |
+
).to(self.device)
|
| 83 |
+
return tokenized
|
| 84 |
+
|
| 85 |
+
def encode(self, input_ids, attention_mask, dim, *args, **kwargs):
|
| 86 |
+
"""
|
| 87 |
+
Pass through the model and compute normalized embeddings.
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
input_ids (torch.Tensor): Input token IDs.
|
| 91 |
+
attention_mask (torch.Tensor): Attention mask tensor.
|
| 92 |
+
dim (int): Dimensionality for output embeddings.
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
torch.Tensor: Normalized output embeddings.
|
| 96 |
+
"""
|
| 97 |
+
outputs = self.forward(input_ids, attention_mask, *args, **kwargs)
|
| 98 |
+
embeddings = self._average_pool(
|
| 99 |
+
outputs.last_hidden_state[:, :, :dim], attention_mask
|
| 100 |
+
)
|
| 101 |
+
# normalize embeddings
|
| 102 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 103 |
+
return embeddings
|
| 104 |
+
|
| 105 |
+
def encode_queries(
|
| 106 |
+
self,
|
| 107 |
+
tokenizer: PreTrainedTokenizer,
|
| 108 |
+
queries: list[str],
|
| 109 |
+
max_seq_len: int = None,
|
| 110 |
+
dim: int = None,
|
| 111 |
+
use_nested: bool = False, # Added for API compatibility with nested version
|
| 112 |
+
):
|
| 113 |
+
"""
|
| 114 |
+
Encodes a list of queries into embeddings.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
tokenizer (PreTrainedTokenizer): Tokenizer for text processing.
|
| 118 |
+
queries (list[str]): List of query texts.
|
| 119 |
+
max_seq_len (int, optional): Maximum sequence length.
|
| 120 |
+
dim (int, optional): Dimensionality for output embeddings.
|
| 121 |
+
|
| 122 |
+
Returns:
|
| 123 |
+
torch.Tensor: Encoded query embeddings in shape (num_queries, dim).
|
| 124 |
+
"""
|
| 125 |
+
if not queries:
|
| 126 |
+
raise ValueError("queries must not be empty.")
|
| 127 |
+
if not isinstance(queries, list) or not all(
|
| 128 |
+
isinstance(q, str) for q in queries
|
| 129 |
+
):
|
| 130 |
+
raise ValueError("queries must be a list of strings.")
|
| 131 |
+
if tokenizer is None:
|
| 132 |
+
raise ValueError("tokenizer must not be None.")
|
| 133 |
+
if dim is not None and (dim < 1 or dim > self.hidden_size):
|
| 134 |
+
raise ValueError(f"dim must be in range [1, {self.hidden_size}].")
|
| 135 |
+
if use_nested:
|
| 136 |
+
warnings.warn(
|
| 137 |
+
"use_nested is not supported due to package import versions.",
|
| 138 |
+
UserWarning,
|
| 139 |
+
)
|
| 140 |
+
queries = [self.query_prefix + query for query in queries]
|
| 141 |
+
tokenized_queries = self._tokenize(tokenizer, queries, max_seq_len, use_nested)
|
| 142 |
+
embeddings = self.encode(**tokenized_queries, dim=dim)
|
| 143 |
+
return embeddings
|
| 144 |
+
|
| 145 |
+
def encode_documents(
|
| 146 |
+
self,
|
| 147 |
+
tokenizer: PreTrainedTokenizer,
|
| 148 |
+
documents: list[str],
|
| 149 |
+
max_seq_len: int = None,
|
| 150 |
+
dim: int = None,
|
| 151 |
+
use_nested: bool = False, # Added for API compatibility with nested version
|
| 152 |
+
):
|
| 153 |
+
"""
|
| 154 |
+
Encodes a list of documents into embeddings.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
tokenizer (PreTrainedTokenizer): Tokenizer for text processing.
|
| 158 |
+
documents (list[str]): List of document texts.
|
| 159 |
+
max_seq_len (int, optional): Maximum sequence length.
|
| 160 |
+
dim (int, optional): Dimensionality for output embeddings.
|
| 161 |
+
|
| 162 |
+
Returns:
|
| 163 |
+
torch.Tensor: Encoded document embeddings in shape (num_documents, dim).
|
| 164 |
+
"""
|
| 165 |
+
if not documents:
|
| 166 |
+
raise ValueError("documents must not be empty.")
|
| 167 |
+
if not isinstance(documents, list) or not all(
|
| 168 |
+
isinstance(d, str) for d in documents
|
| 169 |
+
):
|
| 170 |
+
raise ValueError("documents must be a list of strings.")
|
| 171 |
+
if tokenizer is None:
|
| 172 |
+
raise ValueError("tokenizer must not be None.")
|
| 173 |
+
if dim is not None and (dim < 1 or dim > self.hidden_size):
|
| 174 |
+
raise ValueError(f"dim must be in range [1, {self.hidden_size}].")
|
| 175 |
+
if use_nested:
|
| 176 |
+
warnings.warn(
|
| 177 |
+
"use_nested is not supported due to package import versions.",
|
| 178 |
+
UserWarning,
|
| 179 |
+
)
|
| 180 |
+
tokenized_documents = self._tokenize(
|
| 181 |
+
tokenizer, documents, max_seq_len, use_nested
|
| 182 |
+
)
|
| 183 |
+
embeddings = self.encode(**tokenized_documents, dim=dim)
|
| 184 |
+
return embeddings
|