SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a MultiOutputClassifier instance
- Maximum Sequence Length: 128 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("faodl/20250909_model_g20_multilabel_MiniLM-L12-all-labels-artificial-governance-multi-output")
# Run inference
preds = model("The program mainly aims at
the construction of rural roads, capacity building of local bodies, and
awareness raising activities.")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 41.6795 | 1753 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0001 | 1 | 0.184 | - |
| 0.0039 | 50 | 0.1927 | - |
| 0.0078 | 100 | 0.1729 | - |
| 0.0117 | 150 | 0.1484 | - |
| 0.0156 | 200 | 0.1301 | - |
| 0.0196 | 250 | 0.1134 | - |
| 0.0235 | 300 | 0.1079 | - |
| 0.0274 | 350 | 0.1021 | - |
| 0.0313 | 400 | 0.0876 | - |
| 0.0352 | 450 | 0.0834 | - |
| 0.0391 | 500 | 0.0886 | - |
| 0.0430 | 550 | 0.0728 | - |
| 0.0469 | 600 | 0.0775 | - |
| 0.0508 | 650 | 0.0811 | - |
| 0.0548 | 700 | 0.0745 | - |
| 0.0587 | 750 | 0.0753 | - |
| 0.0626 | 800 | 0.0745 | - |
| 0.0665 | 850 | 0.07 | - |
| 0.0704 | 900 | 0.0702 | - |
| 0.0743 | 950 | 0.0707 | - |
| 0.0782 | 1000 | 0.0702 | - |
| 0.0821 | 1050 | 0.0607 | - |
| 0.0860 | 1100 | 0.067 | - |
| 0.0899 | 1150 | 0.065 | - |
| 0.0939 | 1200 | 0.0659 | - |
| 0.0978 | 1250 | 0.066 | - |
| 0.1017 | 1300 | 0.066 | - |
| 0.1056 | 1350 | 0.06 | - |
| 0.1095 | 1400 | 0.0609 | - |
| 0.1134 | 1450 | 0.0587 | - |
| 0.1173 | 1500 | 0.0542 | - |
| 0.1212 | 1550 | 0.0523 | - |
| 0.1251 | 1600 | 0.0559 | - |
| 0.1291 | 1650 | 0.052 | - |
| 0.1330 | 1700 | 0.0487 | - |
| 0.1369 | 1750 | 0.053 | - |
| 0.1408 | 1800 | 0.0477 | - |
| 0.1447 | 1850 | 0.0492 | - |
| 0.1486 | 1900 | 0.0474 | - |
| 0.1525 | 1950 | 0.0488 | - |
| 0.1564 | 2000 | 0.0461 | - |
| 0.1603 | 2050 | 0.0481 | - |
| 0.1643 | 2100 | 0.0463 | - |
| 0.1682 | 2150 | 0.0432 | - |
| 0.1721 | 2200 | 0.0482 | - |
| 0.1760 | 2250 | 0.0444 | - |
| 0.1799 | 2300 | 0.0466 | - |
| 0.1838 | 2350 | 0.0423 | - |
| 0.1877 | 2400 | 0.041 | - |
| 0.1916 | 2450 | 0.0422 | - |
| 0.1955 | 2500 | 0.0401 | - |
| 0.1995 | 2550 | 0.0405 | - |
| 0.2034 | 2600 | 0.0448 | - |
| 0.2073 | 2650 | 0.0387 | - |
| 0.2112 | 2700 | 0.0371 | - |
| 0.2151 | 2750 | 0.0429 | - |
| 0.2190 | 2800 | 0.0379 | - |
| 0.2229 | 2850 | 0.0384 | - |
| 0.2268 | 2900 | 0.0378 | - |
| 0.2307 | 2950 | 0.0392 | - |
| 0.2346 | 3000 | 0.038 | - |
| 0.2386 | 3050 | 0.0325 | - |
| 0.2425 | 3100 | 0.0345 | - |
| 0.2464 | 3150 | 0.0341 | - |
| 0.2503 | 3200 | 0.0415 | - |
| 0.2542 | 3250 | 0.0313 | - |
| 0.2581 | 3300 | 0.0355 | - |
| 0.2620 | 3350 | 0.033 | - |
| 0.2659 | 3400 | 0.0308 | - |
| 0.2698 | 3450 | 0.0343 | - |
| 0.2738 | 3500 | 0.0379 | - |
| 0.2777 | 3550 | 0.032 | - |
| 0.2816 | 3600 | 0.0358 | - |
| 0.2855 | 3650 | 0.0334 | - |
| 0.2894 | 3700 | 0.0312 | - |
| 0.2933 | 3750 | 0.0336 | - |
| 0.2972 | 3800 | 0.0291 | - |
| 0.3011 | 3850 | 0.0268 | - |
| 0.3050 | 3900 | 0.034 | - |
| 0.3090 | 3950 | 0.0337 | - |
| 0.3129 | 4000 | 0.0266 | - |
| 0.3168 | 4050 | 0.0269 | - |
| 0.3207 | 4100 | 0.0326 | - |
| 0.3246 | 4150 | 0.0317 | - |
| 0.3285 | 4200 | 0.0271 | - |
| 0.3324 | 4250 | 0.0313 | - |
| 0.3363 | 4300 | 0.0263 | - |
| 0.3402 | 4350 | 0.0267 | - |
| 0.3442 | 4400 | 0.0273 | - |
| 0.3481 | 4450 | 0.026 | - |
| 0.3520 | 4500 | 0.0252 | - |
| 0.3559 | 4550 | 0.0261 | - |
| 0.3598 | 4600 | 0.0243 | - |
| 0.3637 | 4650 | 0.0252 | - |
| 0.3676 | 4700 | 0.0291 | - |
| 0.3715 | 4750 | 0.0286 | - |
| 0.3754 | 4800 | 0.0245 | - |
| 0.3794 | 4850 | 0.0263 | - |
| 0.3833 | 4900 | 0.0249 | - |
| 0.3872 | 4950 | 0.0209 | - |
| 0.3911 | 5000 | 0.0245 | - |
| 0.3950 | 5050 | 0.0278 | - |
| 0.3989 | 5100 | 0.0277 | - |
| 0.4028 | 5150 | 0.0266 | - |
| 0.4067 | 5200 | 0.0249 | - |
| 0.4106 | 5250 | 0.0279 | - |
| 0.4145 | 5300 | 0.027 | - |
| 0.4185 | 5350 | 0.0283 | - |
| 0.4224 | 5400 | 0.022 | - |
| 0.4263 | 5450 | 0.0232 | - |
| 0.4302 | 5500 | 0.0198 | - |
| 0.4341 | 5550 | 0.0254 | - |
| 0.4380 | 5600 | 0.0186 | - |
| 0.4419 | 5650 | 0.0237 | - |
| 0.4458 | 5700 | 0.0249 | - |
| 0.4497 | 5750 | 0.0241 | - |
| 0.4537 | 5800 | 0.0239 | - |
| 0.4576 | 5850 | 0.0258 | - |
| 0.4615 | 5900 | 0.0212 | - |
| 0.4654 | 5950 | 0.0208 | - |
| 0.4693 | 6000 | 0.0227 | - |
| 0.4732 | 6050 | 0.0262 | - |
| 0.4771 | 6100 | 0.0257 | - |
| 0.4810 | 6150 | 0.0227 | - |
| 0.4849 | 6200 | 0.0226 | - |
| 0.4889 | 6250 | 0.0231 | - |
| 0.4928 | 6300 | 0.0255 | - |
| 0.4967 | 6350 | 0.0199 | - |
| 0.5006 | 6400 | 0.022 | - |
| 0.5045 | 6450 | 0.0253 | - |
| 0.5084 | 6500 | 0.0209 | - |
| 0.5123 | 6550 | 0.0207 | - |
| 0.5162 | 6600 | 0.0215 | - |
| 0.5201 | 6650 | 0.0225 | - |
| 0.5241 | 6700 | 0.0185 | - |
| 0.5280 | 6750 | 0.019 | - |
| 0.5319 | 6800 | 0.0214 | - |
| 0.5358 | 6850 | 0.0252 | - |
| 0.5397 | 6900 | 0.0216 | - |
| 0.5436 | 6950 | 0.0205 | - |
| 0.5475 | 7000 | 0.0205 | - |
| 0.5514 | 7050 | 0.0244 | - |
| 0.5553 | 7100 | 0.0223 | - |
| 0.5592 | 7150 | 0.0181 | - |
| 0.5632 | 7200 | 0.0199 | - |
| 0.5671 | 7250 | 0.0217 | - |
| 0.5710 | 7300 | 0.0198 | - |
| 0.5749 | 7350 | 0.0224 | - |
| 0.5788 | 7400 | 0.0234 | - |
| 0.5827 | 7450 | 0.0193 | - |
| 0.5866 | 7500 | 0.0168 | - |
| 0.5905 | 7550 | 0.0193 | - |
| 0.5944 | 7600 | 0.0232 | - |
| 0.5984 | 7650 | 0.0183 | - |
| 0.6023 | 7700 | 0.0255 | - |
| 0.6062 | 7750 | 0.0209 | - |
| 0.6101 | 7800 | 0.0262 | - |
| 0.6140 | 7850 | 0.0228 | - |
| 0.6179 | 7900 | 0.0208 | - |
| 0.6218 | 7950 | 0.0167 | - |
| 0.6257 | 8000 | 0.0217 | - |
| 0.6296 | 8050 | 0.0175 | - |
| 0.6336 | 8100 | 0.0196 | - |
| 0.6375 | 8150 | 0.0215 | - |
| 0.6414 | 8200 | 0.0186 | - |
| 0.6453 | 8250 | 0.0181 | - |
| 0.6492 | 8300 | 0.0171 | - |
| 0.6531 | 8350 | 0.0224 | - |
| 0.6570 | 8400 | 0.0214 | - |
| 0.6609 | 8450 | 0.0214 | - |
| 0.6648 | 8500 | 0.0192 | - |
| 0.6688 | 8550 | 0.0213 | - |
| 0.6727 | 8600 | 0.0185 | - |
| 0.6766 | 8650 | 0.02 | - |
| 0.6805 | 8700 | 0.0218 | - |
| 0.6844 | 8750 | 0.0163 | - |
| 0.6883 | 8800 | 0.0183 | - |
| 0.6922 | 8850 | 0.0177 | - |
| 0.6961 | 8900 | 0.0178 | - |
| 0.7000 | 8950 | 0.0157 | - |
| 0.7039 | 9000 | 0.0201 | - |
| 0.7079 | 9050 | 0.017 | - |
| 0.7118 | 9100 | 0.0198 | - |
| 0.7157 | 9150 | 0.0196 | - |
| 0.7196 | 9200 | 0.0189 | - |
| 0.7235 | 9250 | 0.018 | - |
| 0.7274 | 9300 | 0.0193 | - |
| 0.7313 | 9350 | 0.0179 | - |
| 0.7352 | 9400 | 0.0218 | - |
| 0.7391 | 9450 | 0.0186 | - |
| 0.7431 | 9500 | 0.0175 | - |
| 0.7470 | 9550 | 0.0168 | - |
| 0.7509 | 9600 | 0.0193 | - |
| 0.7548 | 9650 | 0.0183 | - |
| 0.7587 | 9700 | 0.0168 | - |
| 0.7626 | 9750 | 0.0194 | - |
| 0.7665 | 9800 | 0.021 | - |
| 0.7704 | 9850 | 0.0178 | - |
| 0.7743 | 9900 | 0.018 | - |
| 0.7783 | 9950 | 0.0171 | - |
| 0.7822 | 10000 | 0.0191 | - |
| 0.7861 | 10050 | 0.0147 | - |
| 0.7900 | 10100 | 0.0193 | - |
| 0.7939 | 10150 | 0.0174 | - |
| 0.7978 | 10200 | 0.0171 | - |
| 0.8017 | 10250 | 0.0156 | - |
| 0.8056 | 10300 | 0.0176 | - |
| 0.8095 | 10350 | 0.0195 | - |
| 0.8135 | 10400 | 0.0151 | - |
| 0.8174 | 10450 | 0.0192 | - |
| 0.8213 | 10500 | 0.0201 | - |
| 0.8252 | 10550 | 0.0192 | - |
| 0.8291 | 10600 | 0.015 | - |
| 0.8330 | 10650 | 0.0181 | - |
| 0.8369 | 10700 | 0.0143 | - |
| 0.8408 | 10750 | 0.0177 | - |
| 0.8447 | 10800 | 0.015 | - |
| 0.8487 | 10850 | 0.0193 | - |
| 0.8526 | 10900 | 0.0168 | - |
| 0.8565 | 10950 | 0.0169 | - |
| 0.8604 | 11000 | 0.0166 | - |
| 0.8643 | 11050 | 0.0148 | - |
| 0.8682 | 11100 | 0.0163 | - |
| 0.8721 | 11150 | 0.0189 | - |
| 0.8760 | 11200 | 0.0197 | - |
| 0.8799 | 11250 | 0.0138 | - |
| 0.8838 | 11300 | 0.0168 | - |
| 0.8878 | 11350 | 0.0153 | - |
| 0.8917 | 11400 | 0.0147 | - |
| 0.8956 | 11450 | 0.0178 | - |
| 0.8995 | 11500 | 0.0184 | - |
| 0.9034 | 11550 | 0.0158 | - |
| 0.9073 | 11600 | 0.0183 | - |
| 0.9112 | 11650 | 0.0127 | - |
| 0.9151 | 11700 | 0.0169 | - |
| 0.9190 | 11750 | 0.018 | - |
| 0.9230 | 11800 | 0.0156 | - |
| 0.9269 | 11850 | 0.0156 | - |
| 0.9308 | 11900 | 0.0162 | - |
| 0.9347 | 11950 | 0.0124 | - |
| 0.9386 | 12000 | 0.0175 | - |
| 0.9425 | 12050 | 0.0179 | - |
| 0.9464 | 12100 | 0.0182 | - |
| 0.9503 | 12150 | 0.0176 | - |
| 0.9542 | 12200 | 0.0182 | - |
| 0.9582 | 12250 | 0.0189 | - |
| 0.9621 | 12300 | 0.0125 | - |
| 0.9660 | 12350 | 0.0176 | - |
| 0.9699 | 12400 | 0.0143 | - |
| 0.9738 | 12450 | 0.0162 | - |
| 0.9777 | 12500 | 0.017 | - |
| 0.9816 | 12550 | 0.0196 | - |
| 0.9855 | 12600 | 0.0192 | - |
| 0.9894 | 12650 | 0.0184 | - |
| 0.9934 | 12700 | 0.0149 | - |
| 0.9973 | 12750 | 0.0172 | - |
Framework Versions
- Python: 3.12.11
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 252