Add pipeline tag: video-text-to-text

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +20 -20
README.md CHANGED
@@ -1,20 +1,21 @@
1
  ---
 
 
 
 
 
2
  library_name: transformers
3
  license: mit
4
  model_name: Geo-Sign (Hyperbolic-Token)
5
- paperswithcode_id: geo-sign-hyperbolic-contrastive-regularisation
6
  tags:
7
- - sign-language-translation
8
- - skeleton-based
9
- - hyperbolic-geometry
10
- - mT5
11
- datasets:
12
- - CSL-Daily
13
- - CSL-News
14
- language:
15
- - zh
16
  task:
17
- - sign-language-translation
 
18
  ---
19
 
20
  # Geo-Sign πŸŒβœ‹ β†’ πŸ“
@@ -43,8 +44,8 @@ Geo-Sign projects pose-based sign-language features into a learnable **PoincarΓ©
43
  Compared with the strong Uni-Sign pose baseline, Geo-Sign boosts BLEU-4 by **+1.81** and ROUGE-L by **+3.03** on the CSL-Daily benchmark while keeping privacy-friendly skeletal inputs only.
44
 
45
  ## Intended Uses & Scope
46
- * **Primary** – Sign-language-to-text translation research, especially for resource-constrained or privacy-sensitive settings where RGB video is unavailable.
47
- * **Out-of-scope** – Real-time production deployments without reliable pose estimation, medical or legal interpretations, or languages beyond datasets the model was trained on.
48
 
49
  ## Evaluation
50
 
@@ -58,11 +59,11 @@ Geo-Sign outperforms all previous gloss-free pose-only methods and rivals many R
58
 
59
  ## Limitations & Ethical Considerations
60
 
61
- * **Pose-estimation dependency** – Errors in upstream key-points propagate to the translation.
62
- * **Training latency** – Hyperbolic operations slow training (~4–6 Γ—) but add **no** cost at inference.
63
- * **Generalisation** – Evaluated only on Chinese Sign Language; other sign languages are not guaranteed.
64
- * **Mis-translation risk** – Automatic SLT can mis-communicate; keep a human in the loop for critical use cases.
65
- * **Biases** – CSL-Daily is domain-specific (news/TV); outputs may reflect that linguistic style.
66
 
67
  ---
68
 
@@ -74,5 +75,4 @@ Geo-Sign outperforms all previous gloss-free pose-only methods and rivals many R
74
  author={Fish, Edward and Bowden, Richard},
75
  journal={arXiv preprint arXiv:2506.00129},
76
  year={2025}
77
- }```
78
-
 
1
  ---
2
+ datasets:
3
+ - CSL-Daily
4
+ - CSL-News
5
+ language:
6
+ - zh
7
  library_name: transformers
8
  license: mit
9
  model_name: Geo-Sign (Hyperbolic-Token)
 
10
  tags:
11
+ - sign-language-translation
12
+ - skeleton-based
13
+ - hyperbolic-geometry
14
+ - mT5
15
+ paperswithcode_id: geo-sign-hyperbolic-contrastive-regularisation
 
 
 
 
16
  task:
17
+ - sign-language-translation
18
+ pipeline_tag: video-text-to-text
19
  ---
20
 
21
  # Geo-Sign πŸŒβœ‹ β†’ πŸ“
 
44
  Compared with the strong Uni-Sign pose baseline, Geo-Sign boosts BLEU-4 by **+1.81** and ROUGE-L by **+3.03** on the CSL-Daily benchmark while keeping privacy-friendly skeletal inputs only.
45
 
46
  ## Intended Uses & Scope
47
+ * **Primary** – Sign-language-to-text translation research, especially for resource-constrained or privacy-sensitive settings where RGB video is unavailable.
48
+ * **Out-of-scope** – Real-time production deployments without reliable pose estimation, medical or legal interpretations, or languages beyond datasets the model was trained on.
49
 
50
  ## Evaluation
51
 
 
59
 
60
  ## Limitations & Ethical Considerations
61
 
62
+ * **Pose-estimation dependency** – Errors in upstream key-points propagate to the translation.
63
+ * **Training latency** – Hyperbolic operations slow training (~4–6 Γ—) but add **no** cost at inference.
64
+ * **Generalisation** – Evaluated only on Chinese Sign Language; other sign languages are not guaranteed.
65
+ * **Mis-translation risk** – Automatic SLT can mis-communicate; keep a human in the loop for critical use cases.
66
+ * **Biases** – CSL-Daily is domain-specific (news/TV); outputs may reflect that linguistic style.
67
 
68
  ---
69
 
 
75
  author={Fish, Edward and Bowden, Richard},
76
  journal={arXiv preprint arXiv:2506.00129},
77
  year={2025}
78
+ }```