Lora_LED_sum_approach

This model is a fine-tuned version of allenai/led-base-16384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5646
  • Rouge1: 0.4521
  • Rouge2: 0.2422
  • Rougel: 0.3904
  • Rougelsum: 0.3905
  • Gen Len: 29.4
  • Bleu: 0.1533
  • Precisions: 0.2152
  • Brevity Penalty: 0.8831
  • Length Ratio: 0.8894
  • Translation Length: 1086.0
  • Reference Length: 1221.0
  • Precision: 0.9043
  • Recall: 0.9002
  • F1: 0.9021
  • Hashcode: roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Precision Recall F1 Hashcode
8.0757 1.0 7 7.6798 0.3128 0.1085 0.253 0.2533 32.0 0.0733 0.1062 1.0 1.0663 1302.0 1221.0 0.8685 0.8728 0.8706 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
6.5609 2.0 14 5.7642 0.4165 0.2088 0.3627 0.3626 30.64 0.1358 0.1742 1.0 1.036 1265.0 1221.0 0.8922 0.8861 0.889 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
4.9145 3.0 21 4.4340 0.4234 0.2265 0.3669 0.3685 25.84 0.1246 0.2092 0.765 0.7887 963.0 1221.0 0.9057 0.894 0.8996 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
4.0682 4.0 28 3.9241 0.4454 0.2452 0.3952 0.3971 27.26 0.1446 0.2209 0.8115 0.8272 1010.0 1221.0 0.9059 0.8983 0.9019 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.6834 5.0 35 3.7361 0.4521 0.237 0.3828 0.3837 27.58 0.1433 0.2137 0.8327 0.8452 1032.0 1221.0 0.9031 0.8973 0.9 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.5042 6.0 42 3.6285 0.4567 0.247 0.3901 0.3908 27.86 0.1451 0.2184 0.8336 0.846 1033.0 1221.0 0.9067 0.9003 0.9033 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.4173 7.0 49 3.5881 0.4458 0.2389 0.3839 0.3852 27.16 0.1439 0.2226 0.7929 0.8116 991.0 1221.0 0.9056 0.8973 0.9013 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.3572 8.0 56 3.5698 0.4514 0.2331 0.3836 0.3862 29.12 0.147 0.2081 0.884 0.8903 1087.0 1221.0 0.9026 0.8994 0.9009 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.3165 9.0 63 3.5700 0.4592 0.2422 0.3954 0.3957 29.28 0.1502 0.2113 0.8922 0.8976 1096.0 1221.0 0.9056 0.9012 0.9033 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.3094 10.0 70 3.5646 0.4521 0.2422 0.3904 0.3905 29.4 0.1533 0.2152 0.8831 0.8894 1086.0 1221.0 0.9043 0.9002 0.9021 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)

Framework versions

  • PEFT 0.15.2
  • Transformers 4.53.1
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for floflodebilbao/Lora_LED_sum_approach

Adapter
(6)
this model