Improve model card with pipeline tag and library name
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,9 +1,11 @@
|
|
| 1 |
---
|
| 2 |
-
license: mit
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
base_model:
|
| 6 |
- deepseek-ai/deepseek-coder-7b-instruct-v1.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
---
|
| 8 |
|
| 9 |
<p align="center">
|
|
@@ -12,19 +14,8 @@ base_model:
|
|
| 12 |
|
| 13 |
## Introduction
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
- **Requirement Analysis**: given requirements and description of the verification or modeling goals, decomposing the goal into detailed verification steps
|
| 18 |
|
| 19 |
-
- **Proof/Model Generation**: given requirements and description of the verification or modeling goals, writing formal proofs or models that can be verified by verifier/model checker.
|
| 20 |
-
|
| 21 |
-
- **Proof segment generation**
|
| 22 |
-
|
| 23 |
-
- **Proof Completion**: complete the given incomplete proofs or models
|
| 24 |
-
|
| 25 |
-
- **Proof Infilling**: filling in the middle of the given incomplete proofs or models
|
| 26 |
-
|
| 27 |
-
- **Code 2 Proof**: (Currently only support for ACSL whose specification is in form of code annotations) given the code under verification, generate the proof with the specifications
|
| 28 |
|
| 29 |
## Application Scenario
|
| 30 |
|
|
@@ -57,9 +48,9 @@ You only need to return the TLA formal specification without explanation.
|
|
| 57 |
|
| 58 |
input_text = """
|
| 59 |
An operation `LM_Inner_Rsp(p)` that represents a response process for a given parameter `p`. It satisfies the following conditions:
|
| 60 |
-
- The control state `octl[p]` is equal to
|
| 61 |
- The `Reply(p, obuf[p], memInt, memInt')` operation is executed.
|
| 62 |
-
- The control state `octl` is updated by setting the `p` index of `octl` to
|
| 63 |
- The variables `omem` and `obuf` remain unchanged.
|
| 64 |
"""
|
| 65 |
|
|
@@ -70,7 +61,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 70 |
)
|
| 71 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 72 |
|
| 73 |
-
messages = [{"role": "user", "content": f"{instruct}
|
|
|
|
| 74 |
|
| 75 |
text = tokenizer.apply_chat_template(
|
| 76 |
messages, tokenize=False, add_generation_prompt=True
|
|
@@ -101,9 +93,9 @@ You only need to return the TLA formal specification without explanation.
|
|
| 101 |
|
| 102 |
input_text = """
|
| 103 |
An operation `LM_Inner_Rsp(p)` that represents a response process for a given parameter `p`. It satisfies the following conditions:
|
| 104 |
-
- The control state `octl[p]` is equal to
|
| 105 |
- The `Reply(p, obuf[p], memInt, memInt')` operation is executed.
|
| 106 |
-
- The control state `octl` is updated by setting the `p` index of `octl` to
|
| 107 |
- The variables `omem` and `obuf` remain unchanged.
|
| 108 |
"""
|
| 109 |
|
|
@@ -123,7 +115,8 @@ llm = LLM(
|
|
| 123 |
)
|
| 124 |
|
| 125 |
# Prepare chat messages
|
| 126 |
-
chat_message = [{"role": "user", "content": f"{instruct}
|
|
|
|
| 127 |
|
| 128 |
# Inference
|
| 129 |
responses = llm.chat(chat_message, greed_sampling, use_tqdm=True)
|
|
@@ -142,5 +135,4 @@ print(responses[0].outputs[0].text)
|
|
| 142 |
primaryClass={cs.AI},
|
| 143 |
url={https://arxiv.org/abs/2501.16207},
|
| 144 |
}
|
| 145 |
-
|
| 146 |
-
```
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
base_model:
|
| 3 |
- deepseek-ai/deepseek-coder-7b-instruct-v1.5
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
license: mit
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
library_name: transformers
|
| 9 |
---
|
| 10 |
|
| 11 |
<p align="center">
|
|
|
|
| 14 |
|
| 15 |
## Introduction
|
| 16 |
|
| 17 |
+
This model, presented in the paper [From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs](https://hf.co/papers/2501.16207), is a fine-tuned LLM for formal verification tasks. Trained on 18k high-quality instruction-response pairs across five formal specification languages (Coq, Dafny, Lean4, ACSL, and TLA+), it excels at various sub-tasks including requirement analysis, proof/model generation, and code-to-proof translation (for ACSL). Interestingly, fine-tuning on this formal data also enhances the model's mathematics, reasoning, and coding capabilities.
|
|
|
|
|
|
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
## Application Scenario
|
| 21 |
|
|
|
|
| 48 |
|
| 49 |
input_text = """
|
| 50 |
An operation `LM_Inner_Rsp(p)` that represents a response process for a given parameter `p`. It satisfies the following conditions:
|
| 51 |
+
- The control state `octl[p]` is equal to `"done"`.
|
| 52 |
- The `Reply(p, obuf[p], memInt, memInt')` operation is executed.
|
| 53 |
+
- The control state `octl` is updated by setting the `p` index of `octl` to `"rdy"`.
|
| 54 |
- The variables `omem` and `obuf` remain unchanged.
|
| 55 |
"""
|
| 56 |
|
|
|
|
| 61 |
)
|
| 62 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 63 |
|
| 64 |
+
messages = [{"role": "user", "content": f"{instruct}
|
| 65 |
+
{input_text}"}]
|
| 66 |
|
| 67 |
text = tokenizer.apply_chat_template(
|
| 68 |
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
| 93 |
|
| 94 |
input_text = """
|
| 95 |
An operation `LM_Inner_Rsp(p)` that represents a response process for a given parameter `p`. It satisfies the following conditions:
|
| 96 |
+
- The control state `octl[p]` is equal to `"done"`.
|
| 97 |
- The `Reply(p, obuf[p], memInt, memInt')` operation is executed.
|
| 98 |
+
- The control state `octl` is updated by setting the `p` index of `octl` to `"rdy"`.
|
| 99 |
- The variables `omem` and `obuf` remain unchanged.
|
| 100 |
"""
|
| 101 |
|
|
|
|
| 115 |
)
|
| 116 |
|
| 117 |
# Prepare chat messages
|
| 118 |
+
chat_message = [{"role": "user", "content": f"{instruct}
|
| 119 |
+
{input_text}"}]
|
| 120 |
|
| 121 |
# Inference
|
| 122 |
responses = llm.chat(chat_message, greed_sampling, use_tqdm=True)
|
|
|
|
| 135 |
primaryClass={cs.AI},
|
| 136 |
url={https://arxiv.org/abs/2501.16207},
|
| 137 |
}
|
| 138 |
+
```
|
|
|