ViTGPT2_VW
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0771
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 2
 - eval_batch_size: 2
 - seed: 42
 - distributed_type: multi-GPU
 - num_devices: 2
 - total_train_batch_size: 4
 - total_eval_batch_size: 4
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - num_epochs: 1.0
 - mixed_precision_training: Native AMP
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 0.1256 | 0.03 | 1000 | 0.0928 | 
| 0.0947 | 0.07 | 2000 | 0.0897 | 
| 0.0889 | 0.1 | 3000 | 0.0859 | 
| 0.0888 | 0.14 | 4000 | 0.0842 | 
| 0.0866 | 0.17 | 5000 | 0.0831 | 
| 0.0852 | 0.2 | 6000 | 0.0819 | 
| 0.0833 | 0.24 | 7000 | 0.0810 | 
| 0.0835 | 0.27 | 8000 | 0.0802 | 
| 0.081 | 0.31 | 9000 | 0.0796 | 
| 0.0803 | 0.34 | 10000 | 0.0789 | 
| 0.0814 | 0.38 | 11000 | 0.0785 | 
| 0.0799 | 0.41 | 12000 | 0.0780 | 
| 0.0786 | 0.44 | 13000 | 0.0776 | 
| 0.0796 | 0.48 | 14000 | 0.0771 | 
Framework versions
- Transformers 4.16.2
 - Pytorch 1.10.2+cu113
 - Datasets 1.18.3
 - Tokenizers 0.11.0
 
- Downloads last month
 - -