This repository contains a Buffet Agent model for a demo use case of FinLoRA: Benchmarking LoRA Methods for Fine-Tuning LLMs on Financial Datasets.
See axolotl config
axolotl version: 0.10.0
base_model: meta-llama/Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
load_in_8bit: true
load_in_4bit: false
adapter: lora
lora_model_dir: null
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
dataset_prepared_path: null
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/buffett_agent_llama_3_1_8b_8bits_r8_lora_original
peft_use_dora: false
peft_use_rslora: false
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project: finlora_models
wandb_entity: null
wandb_watch: gradients
wandb_name: buffett_agent_llama_3_1_8b_8bits_r8_lora_original
wandb_log_model: 'false'
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint: null
logging_steps: 500
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
chat_template: llama3
workspace/FinLoRA/lora/axolotl-output/buffett_agent_llama_3_1_8b_8bits_r8_lora_original
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the /workspace/FinLoRA/data/train/warren_buffett_train_original.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 1.3731
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4900
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 2.1737 |
No log | 0.2506 | 307 | 1.4929 |
1.5172 | 0.5012 | 614 | 1.4560 |
1.5172 | 0.7518 | 921 | 1.4359 |
1.4306 | 1.0024 | 1228 | 1.4188 |
1.3799 | 1.2531 | 1535 | 1.4068 |
1.3799 | 1.5037 | 1842 | 1.3995 |
1.3501 | 1.7543 | 2149 | 1.3907 |
1.3501 | 2.0049 | 2456 | 1.3864 |
1.3422 | 2.2555 | 2763 | 1.3859 |
1.3064 | 2.5061 | 3070 | 1.3781 |
1.3064 | 2.7567 | 3377 | 1.3746 |
1.2952 | 3.0073 | 3684 | 1.3738 |
1.2952 | 3.2580 | 3991 | 1.3738 |
1.2749 | 3.5086 | 4298 | 1.3740 |
1.2713 | 3.7592 | 4605 | 1.3731 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ghostof0days/buffett_agent_llama_3_1_8b_8bits_r8_lora_original
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct