This repository contains a Buffet Agent model for a demo use case of FinLoRA: Benchmarking LoRA Methods for Fine-Tuning LLMs on Financial Datasets.

Built with Axolotl

See axolotl config

axolotl version: 0.10.0

base_model: meta-llama/Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
load_in_8bit: true
load_in_4bit: false
adapter: lora
lora_model_dir: null
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
dataset_prepared_path: null
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/buffett_agent_llama_3_1_8b_8bits_r8_lora_original
peft_use_dora: false
peft_use_rslora: false
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project: finlora_models
wandb_entity: null
wandb_watch: gradients
wandb_name: buffett_agent_llama_3_1_8b_8bits_r8_lora_original
wandb_log_model: 'false'
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint: null
logging_steps: 500
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>
chat_template: llama3

workspace/FinLoRA/lora/axolotl-output/buffett_agent_llama_3_1_8b_8bits_r8_lora_original

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the /workspace/FinLoRA/data/train/warren_buffett_train_original.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3731

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 4900

Training results

Training Loss Epoch Step Validation Loss
No log 0 0 2.1737
No log 0.2506 307 1.4929
1.5172 0.5012 614 1.4560
1.5172 0.7518 921 1.4359
1.4306 1.0024 1228 1.4188
1.3799 1.2531 1535 1.4068
1.3799 1.5037 1842 1.3995
1.3501 1.7543 2149 1.3907
1.3501 2.0049 2456 1.3864
1.3422 2.2555 2763 1.3859
1.3064 2.5061 3070 1.3781
1.3064 2.7567 3377 1.3746
1.2952 3.0073 3684 1.3738
1.2952 3.2580 3991 1.3738
1.2749 3.5086 4298 1.3740
1.2713 3.7592 4605 1.3731

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.8.0.dev20250319+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ghostof0days/buffett_agent_llama_3_1_8b_8bits_r8_lora_original

Adapter
(995)
this model