SetFit with TimKond/S-PubMedBert-MedQuAD
This is a SetFit model that can be used for Text Classification. This SetFit model uses TimKond/S-PubMedBert-MedQuAD as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: TimKond/S-PubMedBert-MedQuAD
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
non_oncology |
|
oncology |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Lymph node pathology reveals metastatic adenocarcinoma with extracapsular extension. Immunostains are consistent with breast primary tumor origin.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 12 | 31.1543 | 929 |
Label | Training Sample Count |
---|---|
non_oncology | 293 |
oncology | 180 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: 1000
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.001 | 1 | 0.2417 | - |
0.05 | 50 | 0.1253 | - |
0.1 | 100 | 0.0275 | - |
0.15 | 150 | 0.0053 | - |
0.2 | 200 | 0.0005 | - |
0.25 | 250 | 0.0002 | - |
0.3 | 300 | 0.0002 | - |
0.35 | 350 | 0.0001 | - |
0.4 | 400 | 0.0001 | - |
0.45 | 450 | 0.0001 | - |
0.5 | 500 | 0.0001 | - |
0.55 | 550 | 0.0001 | - |
0.6 | 600 | 0.0001 | - |
0.65 | 650 | 0.0001 | - |
0.7 | 700 | 0.0001 | - |
0.75 | 750 | 0.0001 | - |
0.8 | 800 | 0.0 | - |
0.85 | 850 | 0.0001 | - |
0.9 | 900 | 0.0001 | - |
0.95 | 950 | 0.0001 | - |
1.0 | 1000 | 0.0001 | 0.0001 |
Framework Versions
- Python: 3.11.10
- SetFit: 1.1.2
- Sentence Transformers: 5.0.0
- Transformers: 4.53.2
- PyTorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 139
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for gijssmit/oncology-corpus-classifier-v0
Base model
TimKond/S-PubMedBert-MedQuAD