File size: 14,426 Bytes
64ab343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import warnings

from typing import Literal
from transformers import AutoConfig
from transformers.models.auto import CONFIG_MAPPING
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation

GIGAREMBED_TYPE = "gigarembed"
LATENT_ATTENTION_TYPE = "latent_attention"


class GigarConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`GigarModel`]. It is used to instantiate an Gigar
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Gigar-7B.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Gigar model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GigarModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Gigar 1 supports up to 2048 tokens,
            Gigar 2 up to 4096, CodeLlama up to 16384.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        pretraining_tp (`int`, *optional*, defaults to 1):
            Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
            document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
            understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
            results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'gigar3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'gigar3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'gigar3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'gigar3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        head_dim (`int`, *optional*):
            The attention head dimension. If None, it will default to hidden_size // num_attention_heads

    ```python
    >>> from transformers import GigarModel, GigarConfig

    >>> # Initializing a Gigar gigar-7b style configuration
    >>> configuration = GigarConfig()

    >>> # Initializing a model from the gigar-7b style configuration
    >>> model = GigarModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "gigar"
    keys_to_ignore_at_inference = ["past_key_values"]
    # Default tensor parallel plan for base model `GigarModel`
    base_model_tp_plan = {
        "layers.*.self_attn.q_proj": "colwise",
        "layers.*.self_attn.k_proj": "colwise",
        "layers.*.self_attn.v_proj": "colwise",
        "layers.*.self_attn.o_proj": "rowwise",
        "layers.*.mlp.gate_proj": "colwise",
        "layers.*.mlp.up_proj": "colwise",
        "layers.*.mlp.down_proj": "rowwise",
    }

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        mlp_bias=False,
        head_dim=None,
        apply_qk_norm=False,
        mla_config=None,
        **kwargs,
    ):
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.mlp_bias = mlp_bias
        self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, copy it it to 'rope_type'.
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        rope_config_validation(self)

        self.apply_qk_norm = apply_qk_norm
        self.mla_config = mla_config

        self._validate_mla_config()

    def _validate_mla_config(self):
        if self.mla_config is None:
            warnings.warn("MLA config is None!")
            return

        EXPECTED_KEYS = [
            "qk_nope_head_dim",
            "qk_rope_head_dim",
            "v_head_dim",
            "kv_lora_rank",
            "q_lora_rank",
        ]
        if not all((key in self.mla_config for key in EXPECTED_KEYS)):
            raise ValueError(
                f"MLA config is expected to have the following keys {EXPECTED_KEYS} but got {self.mla_config.keys()}."
            )

        if self.mla_config["qk_nope_head_dim"] + self.mla_config["qk_rope_head_dim"] != self.mla_config["v_head_dim"]:
            err_msg = (
                f"QK and V head dims do not match! Got {self.mla_config['qk_nope_head_dim']} + {self.mla_config['qk_rope_head_dim']} "
                f"= {self.mla_config['qk_rope_head_dim'] + self.mla_config['qk_nope_head_dim']} and {self.mla_config['v_head_dim']}."
            )
            raise ValueError(err_msg)


class GigarEmbedConfig(PretrainedConfig):
    model_type = "gigarembed"
    is_composition = False

    def __init__(
        self,
        latent_attention_config=None,
        text_config=None,
        padding_side: Literal["right", "left"]="right",
        add_pad_token: bool=True,
        is_mask_instruction: bool = True,
        add_eos: bool=True,
        mask_type: str="b",
        **kwargs,
    ):
        if isinstance(latent_attention_config, dict):
            latent_attention_config["model_type"] = (
                latent_attention_config["model_type"] if "model_type" in latent_attention_config else LATENT_ATTENTION_TYPE
            )
            latent_attention_config = CONFIG_MAPPING[latent_attention_config["model_type"]](**latent_attention_config)

        self.latent_attention_config = latent_attention_config

        if isinstance(text_config, dict):
            text_config = GigarConfig(**text_config)
        elif text_config is None:
            text_config = None

        self.text_config = text_config
        self.padding_side = padding_side
        self.is_mask_instruction = is_mask_instruction
        self.add_pad_token = add_pad_token
        self.add_eos = add_eos
        self.mask_type = mask_type
        if "hidden_size" in kwargs:
            self.hidden_size = kwargs["hidden_size"]

        super().__init__(**kwargs)


class LatentAttentionConfig(PretrainedConfig):
    model_type = LATENT_ATTENTION_TYPE
    is_composition = False
    _name_or_path = "latent_attention"

    def __init__(
        self,
        num_latents_value: int,
        num_cross_heads: int,
        hidden_dim: int,
        latent_dim: int,
        cross_dim_head: int,
        mult: int,
        **kwargs,
    ):
        self.num_latents_value = num_latents_value
        self.num_cross_heads = num_cross_heads
        self.hidden_dim = hidden_dim
        self.latent_dim = latent_dim
        self.cross_dim_head = cross_dim_head
        self.mult = mult

        super().__init__(**kwargs)


AutoConfig.register(GIGAREMBED_TYPE, GigarEmbedConfig)
AutoConfig.register(LATENT_ATTENTION_TYPE, LatentAttentionConfig)

GigarEmbedConfig.register_for_auto_class()
LatentAttentionConfig.register_for_auto_class()