|
|
import copy |
|
|
import logging |
|
|
from typing import Callable, List, Optional, Tuple, Union, Mapping |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import numpy as np |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from einops import rearrange, repeat |
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
|
|
from transformers.cache_utils import Cache |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import DynamicCache, StaticCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings |
|
|
|
|
|
from .configuration_gigarembed import GigarConfig, GigarEmbedConfig, LatentAttentionConfig |
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
_CONFIG_FOR_DOC = "GigarEmbedConfig" |
|
|
|
|
|
|
|
|
class GigarMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
class GigarRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
GigarRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs, |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class GigarLatentAttention(nn.Module): |
|
|
""" |
|
|
Multi-headed Latent Attention (MLA) |
|
|
|
|
|
Check out the original paper: https://arxiv.org/pdf/2405.04434, |
|
|
and the reference implementation: https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py |
|
|
""" |
|
|
|
|
|
def __init__(self, config: GigarConfig, layer_idx: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
|
|
|
assert config.num_attention_heads == config.num_key_value_heads, ( |
|
|
"GQA for MLA is not supported (does it even make sense?)" |
|
|
) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
|
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
self.rope_theta = config.rope_theta |
|
|
self.apply_qk_norm = config.apply_qk_norm |
|
|
self.attention_dropout = config.attention_dropout |
|
|
|
|
|
assert config.mla_config is not None |
|
|
self.qk_nope_head_dim = config.mla_config["qk_nope_head_dim"] |
|
|
self.qk_rope_head_dim = config.mla_config["qk_rope_head_dim"] |
|
|
self.v_head_dim = config.mla_config["v_head_dim"] |
|
|
self.kv_lora_rank = config.mla_config["kv_lora_rank"] |
|
|
self.q_lora_rank = config.mla_config["q_lora_rank"] |
|
|
|
|
|
self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim |
|
|
|
|
|
self.scaling = self.qk_head_dim**-0.5 |
|
|
|
|
|
if self.q_lora_rank == 0: |
|
|
self.q_proj = nn.Linear( |
|
|
self.hidden_size, |
|
|
self.num_heads * self.qk_head_dim, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
else: |
|
|
self.dq_proj = nn.Linear( |
|
|
self.hidden_size, |
|
|
self.q_lora_rank, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
self.q_norm = GigarRMSNorm(self.q_lora_rank) |
|
|
self.uq_proj = nn.Linear( |
|
|
self.q_lora_rank, |
|
|
self.num_heads * self.qk_head_dim, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
|
|
|
self.kv_norm = GigarRMSNorm(self.kv_lora_rank) |
|
|
self.dkv_proj = nn.Linear( |
|
|
self.hidden_size, |
|
|
self.kv_lora_rank, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
self.uk_proj = nn.Linear( |
|
|
config.kv_lora_rank, |
|
|
self.num_heads * self.qk_nope_head_dim, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
self.uv_proj = nn.Linear( |
|
|
config.kv_lora_rank, |
|
|
self.num_heads * self.v_head_dim, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
self.kr_proj = nn.Linear( |
|
|
self.hidden_size, |
|
|
self.num_heads * self.qk_rope_head_dim, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
|
|
|
self.o_proj = nn.Linear( |
|
|
self.num_heads * self.v_head_dim, |
|
|
self.hidden_size, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
|
|
|
if self.apply_qk_norm: |
|
|
self.qk_q_norm = nn.LayerNorm(self.num_heads * self.qk_head_dim, bias=False) |
|
|
self.qk_k_norm = nn.LayerNorm(self.num_heads * self.qk_head_dim, bias=False) |
|
|
|
|
|
config_for_rope = copy.copy(self.config) |
|
|
config_for_rope.head_dim = self.config.qk_rope_head_dim |
|
|
|
|
|
self.is_causal = False |
|
|
|
|
|
def _compute_qkv( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
): |
|
|
"""Compute query, key, and value tensors from hidden states.""" |
|
|
bsz, seq_len, _ = hidden_states.size() |
|
|
|
|
|
if self.q_lora_rank == 0: |
|
|
query = self.q_proj(hidden_states) |
|
|
else: |
|
|
query = self.uq_proj(self.q_norm(self.dq_proj(hidden_states))) |
|
|
|
|
|
latent = self.dkv_proj(hidden_states) |
|
|
latent = self.kv_norm(latent) |
|
|
k_rope = self.kr_proj(hidden_states) |
|
|
|
|
|
k_nope = self.uk_proj(latent) |
|
|
value = self.uv_proj(latent) |
|
|
|
|
|
if self.apply_qk_norm: |
|
|
query = self.qk_q_norm(query).to(query.dtype) |
|
|
key = self.qk_k_norm(torch.cat([k_nope, k_rope], dim=-1)).to(k_nope.dtype) |
|
|
k_nope, k_rope = torch.split(key, [k_nope.shape[-1], k_rope.shape[-1]], dim=-1) |
|
|
|
|
|
|
|
|
query = query.view(bsz, seq_len, self.num_heads, self.qk_head_dim).transpose(1, 2) |
|
|
k_nope = k_nope.view(bsz, seq_len, self.num_heads, self.qk_nope_head_dim).transpose(1, 2) |
|
|
k_rope = k_rope.view(bsz, seq_len, self.num_heads, self.qk_rope_head_dim).transpose(1, 2) |
|
|
value = value.view(bsz, seq_len, self.num_heads, self.v_head_dim).transpose(1, 2) |
|
|
|
|
|
q_nope, q_rope = torch.split(query, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) |
|
|
|
|
|
return q_nope, q_rope, k_nope, k_rope, value |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs, |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
""" |
|
|
hidden_states: [bsz, seq_len, hidden_size] |
|
|
attention_mask: [bsz, seq_len] |
|
|
""" |
|
|
batch_size, seq_len, _ = hidden_states.size() |
|
|
|
|
|
q_nope, q_rope, k_nope, k_rope, value_states = self._compute_qkv(hidden_states) |
|
|
|
|
|
|
|
|
cos, sin = position_embeddings |
|
|
q_rope, k_rope = apply_rotary_pos_emb(q_rope, k_rope, cos, sin) |
|
|
query_states = torch.cat([q_nope, q_rope], dim=-1) |
|
|
key_states = torch.cat([k_nope, k_rope], dim=-1) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(batch_size, seq_len, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class GigarDecoderLayer(nn.Module): |
|
|
def __init__(self, config: GigarConfig, layer_idx: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = GigarLatentAttention(config, layer_idx) |
|
|
self.mlp = GigarMLP(config) |
|
|
self.input_layernorm = GigarRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = GigarRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
class GigarRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: GigarConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
|
""" |
|
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
|
1 - growing beyond the cached sequence length (allow scaling) |
|
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
|
""" |
|
|
seq_len = torch.max(position_ids) + 1 |
|
|
if seq_len > self.max_seq_len_cached: |
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.max_seq_len_cached = seq_len |
|
|
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: |
|
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
|
self.max_seq_len_cached = self.original_max_seq_len |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x, position_ids): |
|
|
if "dynamic" in self.rope_type: |
|
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
|
|
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() |
|
|
sin = emb.sin() |
|
|
|
|
|
|
|
|
cos = cos * self.attention_scaling |
|
|
sin = sin * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
GIGAR_START_DOCSTRING = r""" |
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
|
etc.) |
|
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
|
and behavior. |
|
|
|
|
|
Parameters: |
|
|
config ([`GigarConfig`]): |
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
|
load the weights associated with the model, only the configuration. Check out the |
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
|
""" |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"The bare Gigar Model outputting raw hidden-states without any specific head on top.", |
|
|
GIGAR_START_DOCSTRING, |
|
|
) |
|
|
class GigarPreTrainedModel(PreTrainedModel): |
|
|
config_class = GigarConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["GigarDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_supports_cache_class = True |
|
|
_supports_quantized_cache = True |
|
|
_supports_static_cache = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
GIGAR_INPUTS_DOCSTRING = r""" |
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
|
it. |
|
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
|
|
- 1 for tokens that are **not masked**, |
|
|
- 0 for tokens that are **masked**. |
|
|
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
|
`past_key_values`). |
|
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
|
information on the default strategy. |
|
|
|
|
|
- 1 indicates the head is **not masked**, |
|
|
- 0 indicates the head is **masked**. |
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
|
config.n_positions - 1]`. |
|
|
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
|
|
Two formats are allowed: |
|
|
- a [`~cache_utils.Cache`] instance, see our |
|
|
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); |
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
|
cache format. |
|
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
|
legacy cache format will be returned. |
|
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
|
of shape `(batch_size, sequence_length)`. |
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
|
model's internal embedding lookup matrix. |
|
|
use_cache (`bool`, *optional*): |
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
|
`past_key_values`). |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
|
tensors for more detail. |
|
|
output_hidden_states (`bool`, *optional*): |
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
|
more detail. |
|
|
return_dict (`bool`, *optional*): |
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
|
the complete sequence length. |
|
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
|
"The bare Gigar Model outputting raw hidden-states without any specific head on top.", |
|
|
GIGAR_START_DOCSTRING, |
|
|
) |
|
|
class GigarModel(GigarPreTrainedModel): |
|
|
""" |
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GigarDecoderLayer`] |
|
|
|
|
|
Args: |
|
|
config: GigarConfig |
|
|
""" |
|
|
|
|
|
def __init__(self, config: GigarConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[GigarDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = GigarRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = GigarRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
@add_start_docstrings_to_model_forward(GIGAR_INPUTS_DOCSTRING) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
attention_mask = self._update_encoder_mask(attention_mask, inputs_embeds) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
attention_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
use_cache, |
|
|
cache_position, |
|
|
position_embeddings, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**flash_attn_kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
output = BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
return output if return_dict else output.to_tuple() |
|
|
|
|
|
def _update_encoder_mask( |
|
|
self, |
|
|
attention_mask: torch.Tensor, |
|
|
input_tensor: torch.Tensor, |
|
|
): |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
if attention_mask is not None and (attention_mask == 0).any(): |
|
|
return attention_mask |
|
|
return None |
|
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
|
batch_size, sequence_length = input_tensor.shape[:2] |
|
|
|
|
|
|
|
|
encoder_mask = torch.full( |
|
|
(batch_size, 1, sequence_length, sequence_length), |
|
|
fill_value=1.0, |
|
|
dtype=dtype, |
|
|
device=device |
|
|
) |
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
padding_mask = attention_mask[:, None, None, :].to(dtype=dtype) |
|
|
|
|
|
|
|
|
encoder_mask = encoder_mask * padding_mask |
|
|
|
|
|
|
|
|
min_dtype = torch.finfo(dtype).min |
|
|
encoder_mask = encoder_mask.masked_fill(encoder_mask == 0.0, min_dtype) |
|
|
|
|
|
return encoder_mask |
|
|
|
|
|
def _update_causal_mask( |
|
|
self, |
|
|
attention_mask: torch.Tensor, |
|
|
input_tensor: torch.Tensor, |
|
|
cache_position: torch.Tensor, |
|
|
past_key_values: Cache, |
|
|
output_attentions: bool, |
|
|
): |
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
if attention_mask is not None and (attention_mask == 0.0).any(): |
|
|
return attention_mask |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
|
|
|
|
|
|
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: |
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
|
attention_mask, |
|
|
inputs_embeds=input_tensor, |
|
|
past_key_values_length=past_seen_tokens, |
|
|
is_training=self.training, |
|
|
): |
|
|
return None |
|
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
|
sequence_length = input_tensor.shape[1] |
|
|
if using_static_cache: |
|
|
target_length = past_key_values.get_max_cache_shape() |
|
|
else: |
|
|
target_length = ( |
|
|
attention_mask.shape[-1] |
|
|
if isinstance(attention_mask, torch.Tensor) |
|
|
else past_seen_tokens + sequence_length + 1 |
|
|
) |
|
|
|
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask, |
|
|
sequence_length=sequence_length, |
|
|
target_length=target_length, |
|
|
dtype=dtype, |
|
|
device=device, |
|
|
cache_position=cache_position, |
|
|
batch_size=input_tensor.shape[0], |
|
|
) |
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and attention_mask is not None |
|
|
and attention_mask.device.type == "cuda" |
|
|
and not output_attentions |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
min_dtype = torch.finfo(dtype).min |
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
@staticmethod |
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask: torch.Tensor, |
|
|
sequence_length: int, |
|
|
target_length: int, |
|
|
dtype: torch.dtype, |
|
|
device: torch.device, |
|
|
cache_position: torch.Tensor, |
|
|
batch_size: int, |
|
|
**kwargs, |
|
|
): |
|
|
""" |
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
|
|
Args: |
|
|
attention_mask (`torch.Tensor`): |
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape |
|
|
`(batch_size, 1, query_length, key_value_length)`. |
|
|
sequence_length (`int`): |
|
|
The sequence length being processed. |
|
|
target_length (`int`): |
|
|
The target length: when generating with static cache, the mask should be as long as the static cache, |
|
|
to account for the 0 padding, the part of the cache that is not filled yet. |
|
|
dtype (`torch.dtype`): |
|
|
The dtype to use for the 4D attention mask. |
|
|
device (`torch.device`): |
|
|
The device to plcae the 4D attention mask on. |
|
|
cache_position (`torch.Tensor`): |
|
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
|
batch_size (`torch.Tensor`): |
|
|
Batch size. |
|
|
""" |
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
|
|
causal_mask = attention_mask |
|
|
else: |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
causal_mask = torch.full( |
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
|
) |
|
|
if sequence_length != 1: |
|
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
|
if attention_mask is not None: |
|
|
causal_mask = causal_mask.clone() |
|
|
mask_length = attention_mask.shape[-1] |
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
|
padding_mask = padding_mask == 0 |
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
|
padding_mask, min_dtype |
|
|
) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
|
def __init__(self, dim, mult = 4): |
|
|
super().__init__() |
|
|
self.hidden_size = dim |
|
|
self.intermediate_size = dim * mult |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = nn.SiLU() |
|
|
|
|
|
def forward(self, x): |
|
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
|
def __init__(self, query_dimension, context_dimension=None, num_heads=8, head_dim=64): |
|
|
super().__init__() |
|
|
inner_dimension = head_dim * num_heads |
|
|
context_dimension = context_dimension if context_dimension is not None else query_dimension |
|
|
|
|
|
self.scaling_factor = head_dim ** -0.5 |
|
|
self.num_heads = num_heads |
|
|
|
|
|
self.to_q = nn.Linear(query_dimension, inner_dimension, bias=False) |
|
|
self.to_kv = nn.Linear(context_dimension, inner_dimension * 2, bias=False) |
|
|
self.to_out = nn.Linear(inner_dimension, query_dimension, bias=False) |
|
|
|
|
|
def forward(self, input_tensor, context=None, attention_mask=None): |
|
|
batch_size, seq_len, _ = input_tensor.shape |
|
|
num_heads = self.num_heads |
|
|
|
|
|
|
|
|
query = self.to_q(input_tensor) |
|
|
|
|
|
|
|
|
context = input_tensor if context is None else context |
|
|
key, value = self.to_kv(context).chunk(2, dim=-1) |
|
|
|
|
|
|
|
|
query = rearrange(query, 'b n (h d) -> (b h) n d', h=num_heads) |
|
|
key = rearrange(key, 'b n (h d) -> (b h) n d', h=num_heads) |
|
|
value = rearrange(value, 'b n (h d) -> (b h) n d', h=num_heads) |
|
|
|
|
|
|
|
|
with torch.backends.cuda.sdp_kernel( |
|
|
enable_flash=True, |
|
|
enable_math=True, |
|
|
enable_mem_efficient=True |
|
|
): |
|
|
attention_output = F.scaled_dot_product_attention(query, key, value) |
|
|
|
|
|
|
|
|
attention_output = rearrange(attention_output, '(b h) n d -> b n (h d)', h=num_heads) |
|
|
|
|
|
return self.to_out(attention_output) |
|
|
|
|
|
|
|
|
class LatentAttentionModel(PreTrainedModel): |
|
|
config_class = LatentAttentionConfig |
|
|
|
|
|
def __init__(self, configuration: LatentAttentionConfig): |
|
|
super().__init__(configuration) |
|
|
|
|
|
|
|
|
num_latents = configuration.num_latents_value |
|
|
latent_dimension = configuration.latent_dim |
|
|
cross_attention_heads = configuration.num_cross_heads |
|
|
cross_head_dimension = configuration.cross_dim_head |
|
|
hidden_dimension = configuration.hidden_dim |
|
|
|
|
|
|
|
|
self.cross_attend_blocks = nn.ModuleList([ |
|
|
Attention( |
|
|
query_dimension=latent_dimension, |
|
|
context_dimension=hidden_dimension, |
|
|
num_heads=cross_attention_heads, |
|
|
head_dim=cross_head_dimension |
|
|
), |
|
|
FeedForward(latent_dimension) |
|
|
]) |
|
|
|
|
|
|
|
|
self.latents = nn.Parameter(torch.randn(num_latents, latent_dimension)) |
|
|
|
|
|
def forward(self, hidden_states, attention_mask: Optional[torch.Tensor] = None): |
|
|
cross_attention, feed_forward = self.cross_attend_blocks |
|
|
|
|
|
batch_size, device = hidden_states.size(0), hidden_states.device |
|
|
|
|
|
|
|
|
expanded_latents = self.latents.repeat(batch_size, 1, 1) |
|
|
|
|
|
|
|
|
attended_output = cross_attention( |
|
|
hidden_states, context=expanded_latents, attention_mask=attention_mask) + hidden_states |
|
|
|
|
|
|
|
|
processed_output = feed_forward(attended_output) + attended_output |
|
|
|
|
|
return processed_output |
|
|
|
|
|
|
|
|
class GigarEmbedModel(PreTrainedModel): |
|
|
config_class = GigarEmbedConfig |
|
|
_supports_flash_attn_2 = True |
|
|
_no_split_modules = ["GigarDecoderLayer", "LatentAttentionModel"] |
|
|
|
|
|
def __init__(self, configuration: GigarEmbedConfig): |
|
|
super().__init__(configuration) |
|
|
|
|
|
|
|
|
self.latent_attention_model = AutoModel.from_config( |
|
|
configuration.latent_attention_config |
|
|
) |
|
|
|
|
|
self.tokenizer, self.text_encoder = None, None |
|
|
if configuration.text_config is not None: |
|
|
|
|
|
self.model = AutoModel.from_config(configuration.text_config) |
|
|
|
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
|
configuration.text_config.name_or_path |
|
|
) |
|
|
|
|
|
|
|
|
self.padding_side = configuration.padding_side |
|
|
self.add_eos = configuration.add_eos |
|
|
self.mask_type = configuration.mask_type |
|
|
|
|
|
|
|
|
if configuration.add_pad_token and self.tokenizer is not None: |
|
|
self.add_pad_token() |
|
|
|
|
|
def add_pad_token(self): |
|
|
self.tokenizer.pad_token_id = 0 |
|
|
self.tokenizer.padding_side = self.padding_side |
|
|
|
|
|
def gradient_checkpointing_enable(self, *args, **kwargs): |
|
|
self.model.gradient_checkpointing_enable(*args, **kwargs) |
|
|
|
|
|
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, |
|
|
return_embeddings: bool = False, **kwargs): |
|
|
kwargs.pop('token_type_ids', None) |
|
|
|
|
|
with torch.autocast('cuda', dtype=torch.bfloat16): |
|
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, **kwargs) |
|
|
|
|
|
last_hidden = self.latent_attention_model(outputs.last_hidden_state, attention_mask) |
|
|
|
|
|
if return_embeddings: |
|
|
return self.mean_pool(last_hidden, attention_mask) |
|
|
|
|
|
return BaseModelOutputWithPast(last_hidden_state=last_hidden) |
|
|
|
|
|
def mean_pool(self, last_hidden: torch.Tensor, attention_mask: torch.Tensor): |
|
|
last_hidden = last_hidden.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
|
embeddings = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
|
return F.normalize(embeddings, p=2, dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
AutoModel.register(GigarConfig, GigarModel) |
|
|
AutoModel.register(GigarEmbedConfig, GigarEmbedModel) |
|
|
AutoModel.register(LatentAttentionConfig, LatentAttentionModel) |
|
|
|
|
|
|
|
|
GigarModel.register_for_auto_class("AutoModel") |
|
|
GigarEmbedModel.register_for_auto_class("AutoModel") |
|
|
LatentAttentionModel.register_for_auto_class("AutoModel") |
|
|
|