X-Codec (speech, WavLM)

This codec is part of the X-Codec family of codecs as shown below:

Model checkpoint Semantic Model Domain Training Data
xcodec-hubert-librispeech facebook/hubert-base-ls960 Speech Librispeech
xcodec-wavlm-mls (this model) microsoft/wavlm-base-plus Speech MLS English
xcodec-wavlm-more-data microsoft/wavlm-base-plus Speech MLS English + Internal data
xcodec-hubert-general ZhenYe234/hubert_base_general_audio General audio 200k hours internal data
xcodec-hubert-general-balanced ZhenYe234/hubert_base_general_audio General audio More balanced data

Original model is xcodec_wavlm_mls from this table.

Example usage

The example below applies the codec over all possible bandwidths.


from datasets import Audio, load_dataset
from transformers import XcodecModel, AutoFeatureExtractor
import torch
import os
from scipy.io.wavfile import write as write_wav


model_id = "hf-audio/xcodec-wavlm-mls"
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
available_bandwidths = [0.5, 1, 1.5, 2, 4]

# load model
model = XcodecModel.from_pretrained(model_id, device_map=torch_device)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)

# load audio example
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
librispeech_dummy = librispeech_dummy.cast_column(
    "audio", Audio(sampling_rate=feature_extractor.sampling_rate)
)
audio_array = librispeech_dummy[0]["audio"]["array"]
inputs = feature_extractor(
    raw_audio=audio_array, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt"
).to(model.device)
audio = inputs["input_values"]

for bandwidth in available_bandwidths:
    print(f"Encoding with bandwidth: {bandwidth} kbps")
    # encode
    audio_codes = model.encode(audio, bandwidth=bandwidth, return_dict=False)
    print("Codebook shape", audio_codes.shape)
    # 0.5 kbps -> torch.Size([1, 1, 293])
    # 1.0 kbps -> torch.Size([1, 2, 293])
    # 1.5 kbps -> torch.Size([1, 3, 293])
    # 2.0 kbps -> torch.Size([1, 4, 293])
    # 4.0 kbps -> torch.Size([1, 8, 293])

    # decode
    input_values_dec = model.decode(audio_codes).audio_values

    # save audio to file
    write_wav(f"{os.path.basename(model_id)}_{bandwidth}.wav", feature_extractor.sampling_rate, input_values_dec.squeeze().detach().cpu().numpy())

write_wav("original.wav", feature_extractor.sampling_rate, audio.squeeze().detach().cpu().numpy())

πŸ”Š Audio Samples

Original

0.5 kbps

1 kbps

1.5 kbps

2 kbps

4 kbps

Batch example


from datasets import Audio, load_dataset
from transformers import XcodecModel, AutoFeatureExtractor
import torch


model_id = "hf-audio/xcodec-wavlm-mls"
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
bandwidth = 4
n_audio = 2  # number of audio samples to process in a batch

# load model
model = XcodecModel.from_pretrained(model_id, device_map=torch_device)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)

# load audio example
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
ds = ds.cast_column(
    "audio", Audio(sampling_rate=feature_extractor.sampling_rate)
)
audio = [audio_sample["array"] for audio_sample in ds[-n_audio:]["audio"]]
print(f"Input audio shape: {[_sample.shape for _sample in audio]}")
# Input audio shape: [(113840,), (71680,)]
inputs = feature_extractor(
    raw_audio=audio, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt"
).to(model.device)
audio = inputs["input_values"]
print(f"Padded audio shape: {audio.shape}")
# Padded audio shape: torch.Size([2, 1, 113920])

# encode
audio_codes = model.encode(audio, bandwidth=bandwidth, return_dict=False)
print("Codebook shape", audio_codes.shape)
# Codebook shape torch.Size([2, 8, 356])

# decode
decoded_audio = model.decode(audio_codes).audio_values
print("Decoded audio shape", decoded_audio.shape)
# Decoded audio shape torch.Size([2, 1, 113920])
Downloads last month
1,173
Safetensors
Model size
0.2B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for hf-audio/xcodec-wavlm-mls

Finetuned
(14)
this model

Dataset used to train hf-audio/xcodec-wavlm-mls

Collection including hf-audio/xcodec-wavlm-mls