hkivancoral's picture
End of training
c447632
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5853658536585366

hushem_1x_deit_small_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9089
  • Accuracy: 0.5854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5709 0.2683
1.6365 2.0 12 1.3231 0.3171
1.6365 3.0 18 1.0858 0.4878
1.2777 4.0 24 1.0527 0.4634
1.0819 5.0 30 2.4025 0.4878
1.0819 6.0 36 1.0776 0.6098
1.1957 7.0 42 1.2491 0.4878
1.1957 8.0 48 1.2390 0.4878
1.0582 9.0 54 2.4696 0.3659
0.9645 10.0 60 0.9800 0.6585
0.9645 11.0 66 1.4465 0.4878
0.7158 12.0 72 1.3709 0.4146
0.7158 13.0 78 1.8787 0.5610
0.4707 14.0 84 2.2003 0.4878
0.3746 15.0 90 2.7652 0.4390
0.3746 16.0 96 1.4738 0.6098
0.3815 17.0 102 2.1297 0.4878
0.3815 18.0 108 2.7358 0.4634
0.2562 19.0 114 2.1602 0.6341
0.215 20.0 120 2.4495 0.5122
0.215 21.0 126 2.2161 0.5366
0.0855 22.0 132 2.6756 0.5610
0.0855 23.0 138 3.4355 0.5366
0.0976 24.0 144 2.8453 0.6098
0.0588 25.0 150 2.9043 0.5854
0.0588 26.0 156 3.0589 0.4878
0.0051 27.0 162 2.7256 0.6098
0.0051 28.0 168 2.6655 0.6098
0.0018 29.0 174 2.6795 0.6098
0.005 30.0 180 2.7568 0.6098
0.005 31.0 186 2.8042 0.6098
0.0004 32.0 192 2.8224 0.6098
0.0004 33.0 198 2.8428 0.6098
0.0002 34.0 204 2.8628 0.5854
0.0002 35.0 210 2.8783 0.5854
0.0002 36.0 216 2.8881 0.5854
0.0002 37.0 222 2.8950 0.5854
0.0002 38.0 228 2.9002 0.5854
0.0002 39.0 234 2.9045 0.5854
0.0002 40.0 240 2.9071 0.5854
0.0002 41.0 246 2.9084 0.5854
0.0001 42.0 252 2.9089 0.5854
0.0001 43.0 258 2.9089 0.5854
0.0002 44.0 264 2.9089 0.5854
0.0001 45.0 270 2.9089 0.5854
0.0001 46.0 276 2.9089 0.5854
0.0002 47.0 282 2.9089 0.5854
0.0002 48.0 288 2.9089 0.5854
0.0001 49.0 294 2.9089 0.5854
0.0001 50.0 300 2.9089 0.5854

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1