ViDolphin-v1

This model is a fine-tuned version of ByteDance/Dolphin on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0640

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.2154 0.4365 500 0.1682
0.1639 0.8730 1000 0.1235
0.1091 1.3090 1500 0.1027
0.0988 1.7455 2000 0.0896
0.0835 2.1816 2500 0.0831
0.0748 2.6181 3000 0.0785
0.0735 3.0541 3500 0.0754
0.0634 3.4906 4000 0.0729
0.0563 3.9271 4500 0.0708
0.0659 4.3632 5000 0.0696
0.0539 4.7997 5500 0.0680
0.0554 5.2357 6000 0.0676
0.055 5.6722 6500 0.0660
0.057 6.1082 7000 0.0660
0.0447 6.5447 7500 0.0658
0.0456 6.9812 8000 0.0647
0.042 7.4173 8500 0.0646
0.0482 7.8538 9000 0.0646
0.0386 8.2898 9500 0.0643
0.046 8.7263 10000 0.0639
0.0436 9.1624 10500 0.0642
0.0428 9.5989 11000 0.0640

Framework versions

  • Transformers 4.56.0.dev0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
30
Safetensors
Model size
0.4B params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for htdung167/ViDolphin-v1

Base model

ByteDance/Dolphin
Finetuned
(2)
this model