ViDolphin-v1
This model is a fine-tuned version of ByteDance/Dolphin on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0640
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.2154 | 0.4365 | 500 | 0.1682 |
| 0.1639 | 0.8730 | 1000 | 0.1235 |
| 0.1091 | 1.3090 | 1500 | 0.1027 |
| 0.0988 | 1.7455 | 2000 | 0.0896 |
| 0.0835 | 2.1816 | 2500 | 0.0831 |
| 0.0748 | 2.6181 | 3000 | 0.0785 |
| 0.0735 | 3.0541 | 3500 | 0.0754 |
| 0.0634 | 3.4906 | 4000 | 0.0729 |
| 0.0563 | 3.9271 | 4500 | 0.0708 |
| 0.0659 | 4.3632 | 5000 | 0.0696 |
| 0.0539 | 4.7997 | 5500 | 0.0680 |
| 0.0554 | 5.2357 | 6000 | 0.0676 |
| 0.055 | 5.6722 | 6500 | 0.0660 |
| 0.057 | 6.1082 | 7000 | 0.0660 |
| 0.0447 | 6.5447 | 7500 | 0.0658 |
| 0.0456 | 6.9812 | 8000 | 0.0647 |
| 0.042 | 7.4173 | 8500 | 0.0646 |
| 0.0482 | 7.8538 | 9000 | 0.0646 |
| 0.0386 | 8.2898 | 9500 | 0.0643 |
| 0.046 | 8.7263 | 10000 | 0.0639 |
| 0.0436 | 9.1624 | 10500 | 0.0642 |
| 0.0428 | 9.5989 | 11000 | 0.0640 |
Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 30
Model tree for htdung167/ViDolphin-v1
Base model
ByteDance/Dolphin