Visualize in Weights & Biases

self_iterative_v2_offensive_iteration_0

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5960
  • Accuracy Offensive: 0.8253
  • F1 Macro Offensive: 0.8102
  • F1 Weighted Offensive: 0.8253
  • F1 Macro Total: 0.8102
  • F1 Weighted Total: 0.8253

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Offensive F1 Macro Offensive F1 Weighted Offensive F1 Macro Total F1 Weighted Total
0.5749 1.0 3310 0.4442 0.8078 0.7972 0.8103 0.7972 0.8103
0.6332 2.0 6620 0.5960 0.8253 0.8102 0.8253 0.8102 0.8253
0.6018 3.0 9930 0.7530 0.8141 0.8000 0.8150 0.8000 0.8150
0.5113 4.0 13240 0.8369 0.8197 0.8059 0.8205 0.8059 0.8205
0.4269 5.0 16550 1.0234 0.8038 0.7906 0.8054 0.7906 0.8054
0.3363 6.0 19860 1.3535 0.8197 0.7981 0.8167 0.7981 0.8167
0.2238 7.0 23170 1.2940 0.8125 0.7984 0.8135 0.7984 0.8135

Framework versions

  • Transformers 4.50.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.21.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
235M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support