You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

PyLate model based on hiieu/halong_embedding

This is a PyLate model finetuned from hiieu/halong_embedding on the msmacro-vi dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

  • Model Type: PyLate model
  • Base model: hiieu/halong_embedding
  • Document Length: 180 tokens
  • Query Length: 32 tokens
  • Output Dimensionality: 128 tokens
  • Similarity Function: MaxSim
  • Training Dataset:

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=iambestfeed/halong_colbert,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=iambestfeed/halong_colbert,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Training Details

Training Dataset

msmacro-vi

  • Dataset: msmacro-vi at ed2394d
  • Size: 200,000 training samples
  • Columns: query_id, document_ids, and scores
  • Approximate statistics based on the first 1000 samples:
    query_id document_ids scores
    type int list list
    details
    • 836: ~0.10%
    • 3582: ~0.10%
    • 4599: ~0.10%
    • 4645: ~0.10%
    • 4853: ~0.10%
    • 5154: ~0.10%
    • 7504: ~0.10%
    • 12283: ~0.10%
    • 12335: ~0.10%
    • 12916: ~0.10%
    • 14049: ~0.10%
    • 14828: ~0.10%
    • 15674: ~0.10%
    • 15813: ~0.10%
    • 16728: ~0.10%
    • 22006: ~0.10%
    • 23675: ~0.10%
    • 24199: ~0.10%
    • 25323: ~0.10%
    • 28517: ~0.10%
    • 29213: ~0.10%
    • 32344: ~0.10%
    • 34071: ~0.10%
    • 34604: ~0.10%
    • 35424: ~0.10%
    • 35445: ~0.10%
    • 36148: ~0.10%
    • 37078: ~0.10%
    • 37826: ~0.10%
    • 38185: ~0.10%
    • 40855: ~0.10%
    • 42077: ~0.10%
    • 43614: ~0.10%
    • 45073: ~0.10%
    • 46289: ~0.10%
    • 47507: ~0.10%
    • 48005: ~0.10%
    • 48629: ~0.10%
    • 48785: ~0.10%
    • 49216: ~0.10%
    • 49636: ~0.10%
    • 49970: ~0.10%
    • 52075: ~0.10%
    • 52725: ~0.10%
    • 54142: ~0.10%
    • 54210: ~0.10%
    • 55032: ~0.10%
    • 59546: ~0.10%
    • 60087: ~0.10%
    • 60862: ~0.10%
    • 60941: ~0.10%
    • 61037: ~0.10%
    • 61762: ~0.10%
    • 62649: ~0.10%
    • 63333: ~0.10%
    • 64197: ~0.10%
    • 64879: ~0.10%
    • 67608: ~0.10%
    • 67627: ~0.10%
    • 69463: ~0.10%
    • 70002: ~0.10%
    • 70429: ~0.10%
    • 72166: ~0.10%
    • 72518: ~0.10%
    • 72607: ~0.10%
    • 72791: ~0.10%
    • 73325: ~0.10%
    • 74078: ~0.10%
    • 74857: ~0.10%
    • 75323: ~0.10%
    • 75816: ~0.10%
    • 76929: ~0.10%
    • 77845: ~0.10%
    • 77889: ~0.10%
    • 78077: ~0.10%
    • 78256: ~0.10%
    • 78401: ~0.10%
    • 78798: ~0.10%
    • 80871: ~0.10%
    • 81089: ~0.10%
    • 82179: ~0.10%
    • 82883: ~0.10%
    • 84168: ~0.10%
    • 86891: ~0.10%
    • 88282: ~0.10%
    • 89346: ~0.10%
    • 89386: ~0.10%
    • 90699: ~0.10%
    • 90795: ~0.10%
    • 91367: ~0.10%
    • 91795: ~0.10%
    • 92070: ~0.10%
    • 92523: ~0.10%
    • 92597: ~0.10%
    • 92753: ~0.10%
    • 92787: ~0.10%
    • 96382: ~0.10%
    • 96455: ~0.10%
    • 97274: ~0.10%
    • 97603: ~0.10%
    • 100904: ~0.10%
    • 101205: ~0.10%
    • 101305: ~0.10%
    • 102707: ~0.10%
    • 103074: ~0.10%
    • 105437: ~0.10%
    • 108207: ~0.10%
    • 109776: ~0.10%
    • 112056: ~0.10%
    • 112955: ~0.10%
    • 112977: ~0.10%
    • 113635: ~0.10%
    • 115280: ~0.10%
    • 115551: ~0.10%
    • 116098: ~0.10%
    • 117658: ~0.10%
    • 120255: ~0.10%
    • 120298: ~0.10%
    • 121437: ~0.10%
    • 123429: ~0.10%
    • 125043: ~0.10%
    • 125979: ~0.10%
    • 126851: ~0.10%
    • 128218: ~0.10%
    • 128804: ~0.10%
    • 129598: ~0.10%
    • 131299: ~0.10%
    • 132114: ~0.10%
    • 133696: ~0.10%
    • 134460: ~0.10%
    • 137602: ~0.10%
    • 137679: ~0.10%
    • 138121: ~0.10%
    • 138260: ~0.10%
    • 138823: ~0.10%
    • 139039: ~0.10%
    • 140392: ~0.10%
    • 140651: ~0.10%
    • 142305: ~0.10%
    • 145653: ~0.10%
    • 145683: ~0.10%
    • 145763: ~0.10%
    • 150202: ~0.10%
    • 151135: ~0.10%
    • 152307: ~0.10%
    • 152675: ~0.10%
    • 153693: ~0.10%
    • 154470: ~0.10%
    • 155587: ~0.10%
    • 157602: ~0.10%
    • 157779: ~0.10%
    • 158565: ~0.10%
    • 159177: ~0.10%
    • 159224: ~0.10%
    • 159341: ~0.10%
    • 159892: ~0.10%
    • 161881: ~0.10%
    • 162414: ~0.10%
    • 163765: ~0.10%
    • 165888: ~0.10%
    • 168048: ~0.10%
    • 168425: ~0.10%
    • 168894: ~0.10%
    • 169991: ~0.10%
    • 170731: ~0.10%
    • 171705: ~0.10%
    • 176165: ~0.10%
    • 176798: ~0.10%
    • 180259: ~0.10%
    • 181243: ~0.10%
    • 182102: ~0.10%
    • 182660: ~0.10%
    • 183426: ~0.10%
    • 183930: ~0.10%
    • 184045: ~0.10%
    • 184676: ~0.10%
    • 185294: ~0.10%
    • 186475: ~0.10%
    • 187155: ~0.10%
    • 188198: ~0.10%
    • 191383: ~0.10%
    • 192165: ~0.10%
    • 193507: ~0.10%
    • 194207: ~0.10%
    • 195056: ~0.10%
    • 197377: ~0.10%
    • 198224: ~0.10%
    • 198546: ~0.10%
    • 202122: ~0.10%
    • 203519: ~0.10%
    • 206220: ~0.10%
    • 209739: ~0.10%
    • 210554: ~0.10%
    • 212638: ~0.10%
    • 213096: ~0.10%
    • 213410: ~0.10%
    • 214255: ~0.10%
    • 217541: ~0.10%
    • 219718: ~0.10%
    • 220993: ~0.10%
    • 223241: ~0.10%
    • 224657: ~0.10%
    • 227101: ~0.10%
    • 227497: ~0.10%
    • 227726: ~0.10%
    • 228099: ~0.10%
    • 228451: ~0.10%
    • 230413: ~0.10%
    • 231416: ~0.10%
    • 233312: ~0.10%
    • 234348: ~0.10%
    • 235869: ~0.10%
    • 237784: ~0.10%
    • 240739: ~0.10%
    • 246495: ~0.10%
    • 246821: ~0.10%
    • 248675: ~0.10%
    • 249798: ~0.10%
    • 249962: ~0.10%
    • 249977: ~0.10%
    • 250019: ~0.10%
    • 250548: ~0.10%
    • 251089: ~0.10%
    • 254878: ~0.10%
    • 255183: ~0.10%
    • 255727: ~0.10%
    • 256321: ~0.10%
    • 258276: ~0.10%
    • 260993: ~0.10%
    • 261247: ~0.10%
    • 262123: ~0.10%
    • 262508: ~0.10%
    • 266047: ~0.10%
    • 267089: ~0.10%
    • 267192: ~0.10%
    • 268642: ~0.10%
    • 269025: ~0.10%
    • 273171: ~0.10%
    • 273864: ~0.10%
    • 274521: ~0.10%
    • 274586: ~0.10%
    • 275037: ~0.10%
    • 275643: ~0.10%
    • 276744: ~0.10%
    • 277212: ~0.10%
    • 277990: ~0.10%
    • 279931: ~0.10%
    • 280012: ~0.10%
    • 281699: ~0.10%
    • 282128: ~0.10%
    • 283298: ~0.10%
    • 284268: ~0.10%
    • 285697: ~0.10%
    • 285905: ~0.10%
    • 287456: ~0.10%
    • 287506: ~0.10%
    • 288154: ~0.10%
    • 289046: ~0.10%
    • 292211: ~0.10%
    • 292588: ~0.10%
    • 293357: ~0.10%
    • 293661: ~0.10%
    • 294123: ~0.10%
    • 299287: ~0.10%
    • 300622: ~0.10%
    • 302135: ~0.10%
    • 303224: ~0.10%
    • 304353: ~0.10%
    • 304820: ~0.10%
    • 310215: ~0.10%
    • 310236: ~0.10%
    • 310409: ~0.10%
    • 311231: ~0.10%
    • 312821: ~0.10%
    • 314244: ~0.10%
    • 314415: ~0.10%
    • 314745: ~0.10%
    • 316385: ~0.10%
    • 316883: ~0.10%
    • 317442: ~0.10%
    • 318639: ~0.10%
    • 318652: ~0.10%
    • 320855: ~0.10%
    • 321867: ~0.10%
    • 322114: ~0.10%
    • 323196: ~0.10%
    • 324868: ~0.10%
    • 327581: ~0.10%
    • 329337: ~0.10%
    • 331572: ~0.10%
    • 331650: ~0.10%
    • 331993: ~0.10%
    • 332500: ~0.10%
    • 334757: ~0.10%
    • 336561: ~0.10%
    • 336791: ~0.10%
    • 337002: ~0.10%
    • 338332: ~0.10%
    • 338456: ~0.10%
    • 339065: ~0.10%
    • 339870: ~0.10%
    • 340599: ~0.10%
    • 341156: ~0.10%
    • 342121: ~0.10%
    • 342381: ~0.10%
    • 343411: ~0.10%
    • 344860: ~0.10%
    • 345924: ~0.10%
    • 346421: ~0.10%
    • 346425: ~0.10%
    • 348157: ~0.10%
    • 351281: ~0.10%
    • 351858: ~0.10%
    • 352641: ~0.10%
    • 353748: ~0.10%
    • 357399: ~0.10%
    • 359787: ~0.10%
    • 359893: ~0.10%
    • 360094: ~0.10%
    • 360168: ~0.10%
    • 361127: ~0.10%
    • 362220: ~0.10%
    • 362560: ~0.10%
    • 366835: ~0.10%
    • 367185: ~0.10%
    • 369045: ~0.10%
    • 371113: ~0.10%
    • 376044: ~0.10%
    • 376524: ~0.10%
    • 377231: ~0.10%
    • 377735: ~0.10%
    • 378574: ~0.10%
    • 379749: ~0.10%
    • 379953: ~0.10%
    • 381834: ~0.10%
    • 384039: ~0.10%
    • 384364: ~0.10%
    • 384398: ~0.10%
    • 384751: ~0.10%
    • 385758: ~0.10%
    • 385893: ~0.10%
    • 386098: ~0.10%
    • 387205: ~0.10%
    • 387374: ~0.10%
    • 388450: ~0.10%
    • 388589: ~0.10%
    • 388593: ~0.10%
    • 389571: ~0.10%
    • 389572: ~0.10%
    • 391531: ~0.10%
    • 391857: ~0.10%
    • 393174: ~0.10%
    • 393426: ~0.10%
    • 396601: ~0.10%
    • 396905: ~0.10%
    • 397801: ~0.10%
    • 398011: ~0.10%
    • 398132: ~0.10%
    • 398721: ~0.10%
    • 399016: ~0.10%
    • 401601: ~0.10%
    • 403876: ~0.10%
    • 403897: ~0.10%
    • 404830: ~0.10%
    • 406102: ~0.10%
    • 406397: ~0.10%
    • 407151: ~0.10%
    • 409373: ~0.10%
    • 410084: ~0.10%
    • 410859: ~0.10%
    • 411693: ~0.10%
    • 411984: ~0.10%
    • 412214: ~0.10%
    • 412560: ~0.10%
    • 413117: ~0.10%
    • 416391: ~0.10%
    • 417066: ~0.10%
    • 417198: ~0.10%
    • 417751: ~0.10%
    • 417778: ~0.10%
    • 420257: ~0.10%
    • 420787: ~0.10%
    • 421001: ~0.10%
    • 421045: ~0.10%
    • 421354: ~0.10%
    • 428114: ~0.10%
    • 429057: ~0.10%
    • 429459: ~0.10%
    • 430319: ~0.10%
    • 431215: ~0.10%
    • 431332: ~0.10%
    • 431488: ~0.10%
    • 432097: ~0.10%
    • 432283: ~0.10%
    • 434131: ~0.10%
    • 434934: ~0.10%
    • 435353: ~0.10%
    • 437793: ~0.10%
    • 438297: ~0.10%
    • 438806: ~0.10%
    • 439016: ~0.10%
    • 439129: ~0.10%
    • 439217: ~0.10%
    • 439755: ~0.10%
    • 440343: ~0.10%
    • 440506: ~0.10%
    • 441030: ~0.10%
    • 441509: ~0.10%
    • 443408: ~0.10%
    • 443686: ~0.10%
    • 445516: ~0.10%
    • 445999: ~0.10%
    • 447039: ~0.10%
    • 447219: ~0.10%
    • 447298: ~0.10%
    • 453040: ~0.10%
    • 453745: ~0.10%
    • 454869: ~0.10%
    • 456224: ~0.10%
    • 456251: ~0.10%
    • 457065: ~0.10%
    • 459890: ~0.10%
    • 460010: ~0.10%
    • 463716: ~0.10%
    • 465235: ~0.10%
    • 470470: ~0.10%
    • 471875: ~0.10%
    • 472462: ~0.10%
    • 474016: ~0.10%
    • 479266: ~0.10%
    • 479360: ~0.10%
    • 480621: ~0.10%
    • 483014: ~0.10%
    • 484553: ~0.10%
    • 485031: ~0.10%
    • 485828: ~0.10%
    • 486664: ~0.10%
    • 488266: ~0.10%
    • 489488: ~0.10%
    • 490992: ~0.10%
    • 491894: ~0.10%
    • 491983: ~0.10%
    • 492620: ~0.10%
    • 493035: ~0.10%
    • 493461: ~0.10%
    • 494255: ~0.10%
    • 496473: ~0.10%
    • 496474: ~0.10%
    • 496516: ~0.10%
    • 496813: ~0.10%
    • 496853: ~0.10%
    • 499553: ~0.10%
    • 499565: ~0.10%
    • 499737: ~0.10%
    • 500057: ~0.10%
    • 500546: ~0.10%
    • 501510: ~0.10%
    • 501978: ~0.10%
    • 503905: ~0.10%
    • 510559: ~0.10%
    • 511473: ~0.10%
    • 512440: ~0.10%
    • 513832: ~0.10%
    • 514106: ~0.10%
    • 514902: ~0.10%
    • 515053: ~0.10%
    • 515507: ~0.10%
    • 516205: ~0.10%
    • 517903: ~0.10%
    • 518096: ~0.10%
    • 520796: ~0.10%
    • 521570: ~0.10%
    • 522112: ~0.10%
    • 523814: ~0.10%
    • 525505: ~0.10%
    • 525583: ~0.10%
    • 525764: ~0.10%
    • 528105: ~0.10%
    • 530985: ~0.10%
    • 532014: ~0.10%
    • 534952: ~0.10%
    • 538836: ~0.10%
    • 539326: ~0.10%
    • 539504: ~0.10%
    • 541861: ~0.10%
    • 542925: ~0.10%
    • 543525: ~0.10%
    • 544853: ~0.10%
    • 545091: ~0.10%
    • 546527: ~0.10%
    • 546753: ~0.10%
    • 548007: ~0.10%
    • 548100: ~0.10%
    • 554548: ~0.10%
    • 555064: ~0.10%
    • 560255: ~0.10%
    • 560711: ~0.10%
    • 561084: ~0.10%
    • 561114: ~0.10%
    • 561329: ~0.10%
    • 561838: ~0.10%
    • 561946: ~0.10%
    • 564894: ~0.10%
    • 566884: ~0.10%
    • 568110: ~0.10%
    • 569541: ~0.10%
    • 570881: ~0.10%
    • 571286: ~0.10%
    • 571515: ~0.10%
    • 571577: ~0.10%
    • 572354: ~0.10%
    • 573015: ~0.10%
    • 573283: ~0.10%
    • 577767: ~0.10%
    • 578249: ~0.10%
    • 578805: ~0.10%
    • 580872: ~0.10%
    • 581072: ~0.10%
    • 581684: ~0.10%
    • 582341: ~0.10%
    • 583169: ~0.10%
    • 583322: ~0.10%
    • 583889: ~0.10%
    • 584173: ~0.10%
    • 585406: ~0.10%
    • 585523: ~0.10%
    • 585660: ~0.10%
    • 587005: ~0.10%
    • 587399: ~0.10%
    • 588010: ~0.10%
    • 588337: ~0.10%
    • 590946: ~0.10%
    • 593319: ~0.10%
    • 595246: ~0.10%
    • 597157: ~0.10%
    • 597215: ~0.10%
    • 597368: ~0.10%
    • 597453: ~0.10%
    • 598538: ~0.10%
    • 601120: ~0.10%
    • 604762: ~0.10%
    • 605111: ~0.10%
    • 605547: ~0.10%
    • 606244: ~0.10%
    • 606935: ~0.10%
    • 607099: ~0.10%
    • 609731: ~0.10%
    • 609910: ~0.10%
    • 610485: ~0.10%
    • 613040: ~0.10%
    • 614720: ~0.10%
    • 615525: ~0.10%
    • 616416: ~0.10%
    • 618280: ~0.10%
    • 619151: ~0.10%
    • 619170: ~0.10%
    • 622593: ~0.10%
    • 622755: ~0.10%
    • 623529: ~0.10%
    • 625333: ~0.10%
    • 625780: ~0.10%
    • 626317: ~0.10%
    • 626670: ~0.10%
    • 628299: ~0.10%
    • 628510: ~0.10%
    • 629166: ~0.10%
    • 630995: ~0.10%
    • 632641: ~0.10%
    • 634324: ~0.10%
    • 634750: ~0.10%
    • 636542: ~0.10%
    • 637420: ~0.10%
    • 641046: ~0.10%
    • 643232: ~0.10%
    • 643901: ~0.10%
    • 644517: ~0.10%
    • 645962: ~0.10%
    • 647293: ~0.10%
    • 647443: ~0.10%
    • 648173: ~0.10%
    • 649204: ~0.10%
    • 650521: ~0.10%
    • 651961: ~0.10%
    • 652493: ~0.10%
    • 655888: ~0.10%
    • 656535: ~0.10%
    • 658715: ~0.10%
    • 659035: ~0.10%
    • 659593: ~0.10%
    • 660535: ~0.10%
    • 662154: ~0.10%
    • 662784: ~0.10%
    • 663142: ~0.10%
    • 666319: ~0.10%
    • 666386: ~0.10%
    • 666561: ~0.10%
    • 668151: ~0.10%
    • 668862: ~0.10%
    • 670341: ~0.10%
    • 671801: ~0.10%
    • 673081: ~0.10%
    • 673634: ~0.10%
    • 673875: ~0.10%
    • 673881: ~0.10%
    • 674082: ~0.10%
    • 675319: ~0.10%
    • 675492: ~0.10%
    • 676147: ~0.10%
    • 676238: ~0.10%
    • 676318: ~0.10%
    • 676431: ~0.10%
    • 677459: ~0.10%
    • 678468: ~0.10%
    • 679216: ~0.10%
    • 679307: ~0.10%
    • 680354: ~0.10%
    • 681098: ~0.10%
    • 681873: ~0.10%
    • 684800: ~0.10%
    • 685613: ~0.10%
    • 685690: ~0.10%
    • 686886: ~0.10%
    • 689687: ~0.10%
    • 689748: ~0.10%
    • 694425: ~0.10%
    • 694466: ~0.10%
    • 698130: ~0.10%
    • 702137: ~0.10%
    • 703138: ~0.10%
    • 704067: ~0.10%
    • 704460: ~0.10%
    • 705420: ~0.10%
    • 706199: ~0.10%
    • 706878: ~0.10%
    • 708333: ~0.10%
    • 710580: ~0.10%
    • 710897: ~0.10%
    • 713539: ~0.10%
    • 713584: ~0.10%
    • 714733: ~0.10%
    • 718172: ~0.10%
    • 719545: ~0.10%
    • 719580: ~0.10%
    • 720471: ~0.10%
    • 720690: ~0.10%
    • 722394: ~0.10%
    • 723568: ~0.10%
    • 724334: ~0.10%
    • 724700: ~0.10%
    • 727908: ~0.10%
    • 728088: ~0.10%
    • 729096: ~0.10%
    • 730499: ~0.10%
    • 730711: ~0.10%
    • 733963: ~0.10%
    • 734912: ~0.10%
    • 736431: ~0.10%
    • 738012: ~0.10%
    • 738173: ~0.10%
    • 739026: ~0.10%
    • 739605: ~0.10%
    • 740181: ~0.10%
    • 742066: ~0.10%
    • 742298: ~0.10%
    • 745799: ~0.10%
    • 748392: ~0.10%
    • 748838: ~0.10%
    • 749148: ~0.10%
    • 751762: ~0.10%
    • 752092: ~0.10%
    • 752527: ~0.10%
    • 753568: ~0.10%
    • 755386: ~0.10%
    • 756558: ~0.10%
    • 756736: ~0.10%
    • 758706: ~0.10%
    • 759523: ~0.10%
    • 760550: ~0.10%
    • 762688: ~0.10%
    • 762918: ~0.10%
    • 763569: ~0.10%
    • 763766: ~0.10%
    • 765769: ~0.10%
    • 766789: ~0.10%
    • 768119: ~0.10%
    • 768537: ~0.10%
    • 773106: ~0.10%
    • 775589: ~0.10%
    • 775964: ~0.10%
    • 776055: ~0.10%
    • 777088: ~0.10%
    • 777529: ~0.10%
    • 778375: ~0.10%
    • 781066: ~0.10%
    • 782328: ~0.10%
    • 783231: ~0.10%
    • 784413: ~0.10%
    • 785781: ~0.10%
    • 786250: ~0.10%
    • 786845: ~0.10%
    • 788012: ~0.10%
    • 791857: ~0.10%
    • 792788: ~0.10%
    • 793182: ~0.10%
    • 794187: ~0.10%
    • 794308: ~0.10%
    • 794318: ~0.10%
    • 796097: ~0.10%
    • 796117: ~0.10%
    • 797182: ~0.10%
    • 798215: ~0.10%
    • 802050: ~0.10%
    • 802669: ~0.10%
    • 804168: ~0.10%
    • 804253: ~0.10%
    • 804461: ~0.10%
    • 805743: ~0.10%
    • 808416: ~0.10%
    • 808455: ~0.10%
    • 810577: ~0.10%
    • 811702: ~0.10%
    • 811843: ~0.10%
    • 815923: ~0.10%
    • 816475: ~0.10%
    • 818312: ~0.10%
    • 818521: ~0.10%
    • 819278: ~0.10%
    • 820890: ~0.10%
    • 821615: ~0.10%
    • 823136: ~0.10%
    • 823735: ~0.10%
    • 829476: ~0.10%
    • 830591: ~0.10%
    • 832433: ~0.10%
    • 832597: ~0.10%
    • 833053: ~0.10%
    • 835043: ~0.10%
    • 835759: ~0.10%
    • 837731: ~0.10%
    • 837942: ~0.10%
    • 839448: ~0.10%
    • 840228: ~0.10%
    • 840417: ~0.10%
    • 841851: ~0.10%
    • 843327: ~0.10%
    • 843622: ~0.10%
    • 844870: ~0.10%
    • 846084: ~0.10%
    • 846807: ~0.10%
    • 847076: ~0.10%
    • 847535: ~0.10%
    • 847977: ~0.10%
    • 848075: ~0.10%
    • 848326: ~0.10%
    • 852725: ~0.10%
    • 853465: ~0.10%
    • 856427: ~0.10%
    • 857186: ~0.10%
    • 858377: ~0.10%
    • 858543: ~0.10%
    • 860426: ~0.10%
    • 863804: ~0.10%
    • 866039: ~0.10%
    • 866406: ~0.10%
    • 867180: ~0.10%
    • 868280: ~0.10%
    • 872156: ~0.10%
    • 872791: ~0.10%
    • 872953: ~0.10%
    • 872959: ~0.10%
    • 875015: ~0.10%
    • 876522: ~0.10%
    • 878407: ~0.10%
    • 878710: ~0.10%
    • 878855: ~0.10%
    • 880495: ~0.10%
    • 882732: ~0.10%
    • 884335: ~0.10%
    • 884941: ~0.10%
    • 885893: ~0.10%
    • 886713: ~0.10%
    • 887068: ~0.10%
    • 887751: ~0.10%
    • 888027: ~0.10%
    • 890152: ~0.10%
    • 891137: ~0.10%
    • 891890: ~0.10%
    • 892662: ~0.10%
    • 892973: ~0.10%
    • 893360: ~0.10%
    • 893915: ~0.10%
    • 893976: ~0.10%
    • 894324: ~0.10%
    • 895709: ~0.10%
    • 897065: ~0.10%
    • 898387: ~0.10%
    • 899291: ~0.10%
    • 899604: ~0.10%
    • 900513: ~0.10%
    • 900619: ~0.10%
    • 901170: ~0.10%
    • 902794: ~0.10%
    • 903238: ~0.10%
    • 904294: ~0.10%
    • 904520: ~0.10%
    • 904992: ~0.10%
    • 907212: ~0.10%
    • 908062: ~0.10%
    • 908561: ~0.10%
    • 911034: ~0.10%
    • 911982: ~0.10%
    • 913716: ~0.10%
    • 914819: ~0.10%
    • 915750: ~0.10%
    • 915766: ~0.10%
    • 916125: ~0.10%
    • 916648: ~0.10%
    • 917285: ~0.10%
    • 918194: ~0.10%
    • 926035: ~0.10%
    • 927726: ~0.10%
    • 929821: ~0.10%
    • 930300: ~0.10%
    • 930796: ~0.10%
    • 931617: ~0.10%
    • 932719: ~0.10%
    • 933784: ~0.10%
    • 934378: ~0.10%
    • 935900: ~0.10%
    • 936118: ~0.10%
    • 936336: ~0.10%
    • 937231: ~0.10%
    • 938420: ~0.10%
    • 939184: ~0.10%
    • 939567: ~0.10%
    • 941588: ~0.10%
    • 944093: ~0.10%
    • 944912: ~0.10%
    • 945069: ~0.10%
    • 945659: ~0.10%
    • 946110: ~0.10%
    • 950044: ~0.10%
    • 954101: ~0.10%
    • 954147: ~0.10%
    • 958697: ~0.10%
    • 959530: ~0.10%
    • 961721: ~0.10%
    • 963582: ~0.10%
    • 964471: ~0.10%
    • 965026: ~0.10%
    • 966573: ~0.10%
    • 967330: ~0.10%
    • 968346: ~0.10%
    • 970649: ~0.10%
    • 970873: ~0.10%
    • 971636: ~0.10%
    • 971664: ~0.10%
    • 973555: ~0.10%
    • 973851: ~0.10%
    • 974207: ~0.10%
    • 976896: ~0.10%
    • 981402: ~0.10%
    • 983723: ~0.10%
    • 984358: ~0.10%
    • 984653: ~0.10%
    • 987107: ~0.10%
    • 987167: ~0.10%
    • 994360: ~0.10%
    • 995049: ~0.10%
    • 1002688: ~0.10%
    • 1004305: ~0.10%
    • 1004650: ~0.10%
    • 1004849: ~0.10%
    • 1005118: ~0.10%
    • 1005614: ~0.10%
    • 1005626: ~0.10%
    • 1005669: ~0.10%
    • 1006835: ~0.10%
    • 1011008: ~0.10%
    • 1012299: ~0.10%
    • 1014010: ~0.10%
    • 1014030: ~0.10%
    • 1016549: ~0.10%
    • 1017016: ~0.10%
    • 1017335: ~0.10%
    • 1018386: ~0.10%
    • 1020640: ~0.10%
    • 1021041: ~0.10%
    • 1021411: ~0.10%
    • 1025341: ~0.10%
    • 1025423: ~0.10%
    • 1025767: ~0.10%
    • 1026066: ~0.10%
    • 1026434: ~0.10%
    • 1027516: ~0.10%
    • 1027703: ~0.10%
    • 1028119: ~0.10%
    • 1028642: ~0.10%
    • 1031554: ~0.10%
    • 1032300: ~0.10%
    • 1033639: ~0.10%
    • 1033660: ~0.10%
    • 1034832: ~0.10%
    • 1035274: ~0.10%
    • 1037432: ~0.10%
    • 1037536: ~0.10%
    • 1037759: ~0.10%
    • 1039860: ~0.10%
    • 1041131: ~0.10%
    • 1041892: ~0.10%
    • 1043066: ~0.10%
    • 1044326: ~0.10%
    • 1044905: ~0.10%
    • 1047848: ~0.10%
    • 1048534: ~0.10%
    • 1049477: ~0.10%
    • 1050531: ~0.10%
    • 1052073: ~0.10%
    • 1052617: ~0.10%
    • 1054049: ~0.10%
    • 1055142: ~0.10%
    • 1056933: ~0.10%
    • 1057358: ~0.10%
    • 1057911: ~0.10%
    • 1061411: ~0.10%
    • 1062328: ~0.10%
    • 1062485: ~0.10%
    • 1062534: ~0.10%
    • 1062794: ~0.10%
    • 1063269: ~0.10%
    • 1063467: ~0.10%
    • 1064568: ~0.10%
    • 1064868: ~0.10%
    • 1065481: ~0.10%
    • 1065565: ~0.10%
    • 1067970: ~0.10%
    • 1068014: ~0.10%
    • 1070203: ~0.10%
    • 1070708: ~0.10%
    • 1072038: ~0.10%
    • 1072214: ~0.10%
    • 1074885: ~0.10%
    • 1075308: ~0.10%
    • 1078872: ~0.10%
    • 1078979: ~0.10%
    • 1079266: ~0.10%
    • 1079736: ~0.10%
    • 1080075: ~0.10%
    • 1081716: ~0.10%
    • 1137391: ~0.10%
    • 1138530: ~0.10%
    • 1139697: ~0.10%
    • 1140119: ~0.10%
    • 1140869: ~0.10%
    • 1141527: ~0.10%
    • 1144693: ~0.10%
    • 1145425: ~0.10%
    • 1149162: ~0.10%
    • 1149207: ~0.10%
    • 1150086: ~0.10%
    • 1150398: ~0.10%
    • 1150731: ~0.10%
    • 1151256: ~0.10%
    • 1151403: ~0.10%
    • 1152236: ~0.10%
    • 1153693: ~0.10%
    • 1155859: ~0.10%
    • 1156918: ~0.10%
    • 1158007: ~0.10%
    • 1158559: ~0.10%
    • 1158952: ~0.10%
    • 1159165: ~0.10%
    • 1161242: ~0.10%
    • 1163227: ~0.10%
    • 1166023: ~0.10%
    • 1166231: ~0.10%
    • 1167002: ~0.10%
    • 1169844: ~0.10%
    • 1170663: ~0.10%
    • 1171580: ~0.10%
    • 1172072: ~0.10%
    • 1172083: ~0.10%
    • 1173371: ~0.10%
    • 1173809: ~0.10%
    • 1174049: ~0.10%
    • 1175044: ~0.10%
    • 1175745: ~0.10%
    • 1176061: ~0.10%
    • 1176414: ~0.10%
    • 1176993: ~0.10%
    • 1177449: ~0.10%
    • 1178311: ~0.10%
    • 1179029: ~0.10%
    • 1179069: ~0.10%
    • 1180579: ~0.10%
    • 1181077: ~0.10%
    • 1183293: ~0.10%
    • 1184313: ~0.10%
    • 1185090: ~0.10%
    • 1185669: ~0.10%
    • size: 32 elements
    • size: 32 elements
  • Samples:
    query_id document_ids scores
    685613 [7546874, 1176459, 197677, 2306318, 8541504, ...] [0.9999999992804947, 0.24845418756716053, 0.7594154013647826, 0.26644182105618575, 0.390668914839766, ...]
    237784 [6366584, 4034101, 2325374, 6914618, 6042146, ...] [0.9999999991784339, 0.42233632827946693, 0.5956354295491569, 0.12644415907455164, 0.6636713730105909, ...]
    904294 [448408, 8743975, 49600, 7339401, 2714261, ...] [0.9999999991841937, 0.877629062381539, 0.8330146583389045, 0.3116634796692611, 0.4633524534142185, ...]
  • Loss: pylate.losses.distillation.Distillation

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 4
  • learning_rate: 1e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • save_safetensors: False
  • fp16: True
  • push_to_hub: True
  • hub_model_id: iambestfeed/halong_colbert

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 1
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: iambestfeed/halong_colbert
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.0004 10 0.0329
0.0008 20 0.0301
0.0012 30 0.0312
0.0016 40 0.0313
0.002 50 0.0346
0.0024 60 0.0315
0.0028 70 0.0329
0.0032 80 0.0325
0.0036 90 0.0309
0.004 100 0.0316
0.0044 110 0.032
0.0048 120 0.0304
0.0052 130 0.0309
0.0056 140 0.035
0.006 150 0.0301
0.0064 160 0.0323
0.0068 170 0.0293
0.0072 180 0.0326
0.0076 190 0.0339
0.008 200 0.0335
0.0084 210 0.0329
0.0088 220 0.0294
0.0092 230 0.0311
0.0096 240 0.0292
0.01 250 0.0313
0.0104 260 0.0307
0.0108 270 0.0293
0.0112 280 0.0281
0.0116 290 0.0289
0.012 300 0.03
0.0124 310 0.0304
0.0128 320 0.0292
0.0132 330 0.0304
0.0136 340 0.0304
0.014 350 0.0277
0.0144 360 0.0306
0.0148 370 0.0304
0.0152 380 0.0304
0.0156 390 0.0284
0.016 400 0.0295
0.0164 410 0.0276
0.0168 420 0.0282
0.0172 430 0.0282
0.0176 440 0.0305
0.018 450 0.0284
0.0184 460 0.0284
0.0188 470 0.0327
0.0192 480 0.0294
0.0196 490 0.0291
0.02 500 0.0274
0.0204 510 0.0276
0.0208 520 0.027
0.0212 530 0.0273
0.0216 540 0.0267
0.022 550 0.033
0.0224 560 0.03
0.0228 570 0.0314
0.0232 580 0.0287
0.0236 590 0.0257
0.024 600 0.0292
0.0244 610 0.0282
0.0248 620 0.0285
0.0252 630 0.028
0.0256 640 0.0299
0.026 650 0.0291
0.0264 660 0.0255
0.0268 670 0.0275
0.0272 680 0.0281
0.0276 690 0.0306
0.028 700 0.0269
0.0284 710 0.0283
0.0288 720 0.027
0.0292 730 0.0272
0.0296 740 0.0277
0.03 750 0.0279
0.0304 760 0.0287
0.0308 770 0.0274
0.0312 780 0.0289
0.0316 790 0.0253
0.032 800 0.0288
0.0324 810 0.0288
0.0328 820 0.029
0.0332 830 0.0266
0.0336 840 0.0247
0.034 850 0.0281
0.0344 860 0.0277
0.0348 870 0.0274
0.0352 880 0.0251
0.0356 890 0.0269
0.036 900 0.0277
0.0364 910 0.0258
0.0368 920 0.0275
0.0372 930 0.0274
0.0376 940 0.0271
0.038 950 0.0291
0.0384 960 0.0284
0.0388 970 0.0283
0.0392 980 0.0294
0.0396 990 0.0266
0.04 1000 0.0266
0.0404 1010 0.0271
0.0408 1020 0.0294
0.0412 1030 0.0281
0.0416 1040 0.0273
0.042 1050 0.0284
0.0424 1060 0.0283
0.0428 1070 0.0244
0.0432 1080 0.0273
0.0436 1090 0.0267
0.044 1100 0.0264
0.0444 1110 0.0269
0.0448 1120 0.0281
0.0452 1130 0.0256
0.0456 1140 0.0271
0.046 1150 0.027
0.0464 1160 0.0278
0.0468 1170 0.0261
0.0472 1180 0.0263
0.0476 1190 0.0272
0.048 1200 0.0268
0.0484 1210 0.0283
0.0488 1220 0.0261
0.0492 1230 0.0259
0.0496 1240 0.0282
0.05 1250 0.0258
0.0504 1260 0.028
0.0508 1270 0.0253
0.0512 1280 0.0274
0.0516 1290 0.0259
0.052 1300 0.0254
0.0524 1310 0.0265
0.0528 1320 0.0235
0.0532 1330 0.0268
0.0536 1340 0.0291
0.054 1350 0.028
0.0544 1360 0.0259
0.0548 1370 0.0284
0.0552 1380 0.0268
0.0556 1390 0.0279
0.056 1400 0.0284
0.0564 1410 0.0265
0.0568 1420 0.0276
0.0572 1430 0.0278
0.0576 1440 0.0264
0.058 1450 0.025
0.0584 1460 0.0243
0.0588 1470 0.0262
0.0592 1480 0.0292
0.0596 1490 0.0279
0.06 1500 0.0274
0.0604 1510 0.0261
0.0608 1520 0.0271
0.0612 1530 0.0268
0.0616 1540 0.0249
0.062 1550 0.0294
0.0624 1560 0.0252
0.0628 1570 0.0282
0.0632 1580 0.0246
0.0636 1590 0.0267
0.064 1600 0.0264
0.0644 1610 0.027
0.0648 1620 0.0262
0.0652 1630 0.0287
0.0656 1640 0.0257
0.066 1650 0.0244
0.0664 1660 0.027
0.0668 1670 0.0246
0.0672 1680 0.0273
0.0676 1690 0.026
0.068 1700 0.0264
0.0684 1710 0.0278
0.0688 1720 0.0243
0.0692 1730 0.0227
0.0696 1740 0.0268
0.07 1750 0.0227
0.0704 1760 0.0248
0.0708 1770 0.0272
0.0712 1780 0.0238
0.0716 1790 0.0262
0.072 1800 0.0255
0.0724 1810 0.0272
0.0728 1820 0.0246
0.0732 1830 0.0279
0.0736 1840 0.0265
0.074 1850 0.0264
0.0744 1860 0.0253
0.0748 1870 0.0255
0.0752 1880 0.0264
0.0756 1890 0.0253
0.076 1900 0.0265
0.0764 1910 0.0258
0.0768 1920 0.0265
0.0772 1930 0.0252
0.0776 1940 0.0234
0.078 1950 0.026
0.0784 1960 0.0264
0.0788 1970 0.0268
0.0792 1980 0.0258
0.0796 1990 0.0253
0.08 2000 0.0254
0.0804 2010 0.0271
0.0808 2020 0.0242
0.0812 2030 0.0265
0.0816 2040 0.0261
0.082 2050 0.0271
0.0824 2060 0.0236
0.0828 2070 0.0258
0.0832 2080 0.0231
0.0836 2090 0.0273
0.084 2100 0.0231
0.0844 2110 0.0255
0.0848 2120 0.0243
0.0852 2130 0.0248
0.0856 2140 0.0229
0.086 2150 0.0225
0.0864 2160 0.0237
0.0868 2170 0.0241
0.0872 2180 0.025
0.0876 2190 0.0254
0.088 2200 0.0234
0.0884 2210 0.0224
0.0888 2220 0.0248
0.0892 2230 0.0239
0.0896 2240 0.025
0.09 2250 0.0246
0.0904 2260 0.0219
0.0908 2270 0.0248
0.0912 2280 0.0233
0.0916 2290 0.0243
0.092 2300 0.0237
0.0924 2310 0.0243
0.0928 2320 0.0256
0.0932 2330 0.0238
0.0936 2340 0.0222
0.094 2350 0.0245
0.0944 2360 0.0242
0.0948 2370 0.0247
0.0952 2380 0.0251
0.0956 2390 0.0225
0.096 2400 0.0259
0.0964 2410 0.0236
0.0968 2420 0.0226
0.0972 2430 0.0231
0.0976 2440 0.0237
0.098 2450 0.0219
0.0984 2460 0.0236
0.0988 2470 0.0211
0.0992 2480 0.0249
0.0996 2490 0.0245
0.1 2500 0.0239
0.1004 2510 0.0249
0.1008 2520 0.0223
0.1012 2530 0.0208
0.1016 2540 0.026
0.102 2550 0.0227
0.1024 2560 0.0238
0.1028 2570 0.023
0.1032 2580 0.024
0.1036 2590 0.0237
0.104 2600 0.0227
0.1044 2610 0.0245
0.1048 2620 0.0219
0.1052 2630 0.0226
0.1056 2640 0.0224
0.106 2650 0.0226
0.1064 2660 0.0234
0.1068 2670 0.0224
0.1072 2680 0.0215
0.1076 2690 0.0196
0.108 2700 0.0247
0.1084 2710 0.0233
0.1088 2720 0.0233
0.1092 2730 0.0237
0.1096 2740 0.0234
0.11 2750 0.02
0.1104 2760 0.0228
0.1108 2770 0.0223
0.1112 2780 0.025
0.1116 2790 0.021
0.112 2800 0.023
0.1124 2810 0.0225
0.1128 2820 0.0201
0.1132 2830 0.0244
0.1136 2840 0.0238
0.114 2850 0.0223
0.1144 2860 0.0232
0.1148 2870 0.0248
0.1152 2880 0.0247
0.1156 2890 0.0255
0.116 2900 0.0213
0.1164 2910 0.0231
0.1168 2920 0.0218
0.1172 2930 0.0237
0.1176 2940 0.0236
0.118 2950 0.0229
0.1184 2960 0.0205
0.1188 2970 0.0227
0.1192 2980 0.0225
0.1196 2990 0.0219
0.12 3000 0.0239
0.1204 3010 0.024
0.1208 3020 0.023
0.1212 3030 0.0216
0.1216 3040 0.0237
0.122 3050 0.0224
0.1224 3060 0.0222
0.1228 3070 0.023
0.1232 3080 0.0215
0.1236 3090 0.0221
0.124 3100 0.0213
0.1244 3110 0.0214
0.1248 3120 0.0205
0.1252 3130 0.0224
0.1256 3140 0.0221
0.126 3150 0.0184
0.1264 3160 0.0215
0.1268 3170 0.0205
0.1272 3180 0.0211
0.1276 3190 0.0214
0.128 3200 0.0242
0.1284 3210 0.02
0.1288 3220 0.0232
0.1292 3230 0.0221
0.1296 3240 0.0215
0.13 3250 0.0211
0.1304 3260 0.0226
0.1308 3270 0.025
0.1312 3280 0.0205
0.1316 3290 0.0212
0.132 3300 0.0244
0.1324 3310 0.0197
0.1328 3320 0.0216
0.1332 3330 0.0199
0.1336 3340 0.0199
0.134 3350 0.0241
0.1344 3360 0.0203
0.1348 3370 0.0212
0.1352 3380 0.023
0.1356 3390 0.0228
0.136 3400 0.0223
0.1364 3410 0.0211
0.1368 3420 0.0249
0.1372 3430 0.0208
0.1376 3440 0.0252
0.138 3450 0.0222
0.1384 3460 0.0225
0.1388 3470 0.0225
0.1392 3480 0.0244
0.1396 3490 0.0196
0.14 3500 0.0233
0.1404 3510 0.0216
0.1408 3520 0.0232
0.1412 3530 0.0235
0.1416 3540 0.0229
0.142 3550 0.022
0.1424 3560 0.0231
0.1428 3570 0.0225
0.1432 3580 0.0209
0.1436 3590 0.0201
0.144 3600 0.021
0.1444 3610 0.0209
0.1448 3620 0.0218
0.1452 3630 0.0215
0.1456 3640 0.0212
0.146 3650 0.0222
0.1464 3660 0.0224
0.1468 3670 0.0205
0.1472 3680 0.0209
0.1476 3690 0.0217
0.148 3700 0.0193
0.1484 3710 0.0222
0.1488 3720 0.0183
0.1492 3730 0.0189
0.1496 3740 0.023
0.15 3750 0.0206
0.1504 3760 0.0239
0.1508 3770 0.0223
0.1512 3780 0.0208
0.1516 3790 0.0214
0.152 3800 0.0217
0.1524 3810 0.0217
0.1528 3820 0.0211
0.1532 3830 0.0218
0.1536 3840 0.0219
0.154 3850 0.0206
0.1544 3860 0.02
0.1548 3870 0.0204
0.1552 3880 0.0208
0.1556 3890 0.0199
0.156 3900 0.0216
0.1564 3910 0.0192
0.1568 3920 0.0217
0.1572 3930 0.021
0.1576 3940 0.0204
0.158 3950 0.0236
0.1584 3960 0.0209
0.1588 3970 0.022
0.1592 3980 0.0201
0.1596 3990 0.0184
0.16 4000 0.0242
0.1604 4010 0.0224
0.1608 4020 0.0199
0.1612 4030 0.022
0.1616 4040 0.024
0.162 4050 0.0207
0.1624 4060 0.0219
0.1628 4070 0.0213
0.1632 4080 0.0242
0.1636 4090 0.0197
0.164 4100 0.0204
0.1644 4110 0.0203
0.1648 4120 0.0222
0.1652 4130 0.0235
0.1656 4140 0.0218
0.166 4150 0.0222
0.1664 4160 0.0201
0.1668 4170 0.0225
0.1672 4180 0.0222
0.1676 4190 0.0202
0.168 4200 0.0197
0.1684 4210 0.0214
0.1688 4220 0.0238
0.1692 4230 0.0191
0.1696 4240 0.025
0.17 4250 0.0186
0.1704 4260 0.0198
0.1708 4270 0.0187
0.1712 4280 0.0218
0.1716 4290 0.0207
0.172 4300 0.0214
0.1724 4310 0.02
0.1728 4320 0.0199
0.1732 4330 0.0203
0.1736 4340 0.0202
0.174 4350 0.0191
0.1744 4360 0.021
0.1748 4370 0.018
0.1752 4380 0.0214
0.1756 4390 0.0227
0.176 4400 0.0209
0.1764 4410 0.0247
0.1768 4420 0.0193
0.1772 4430 0.0201
0.1776 4440 0.0176
0.178 4450 0.0214
0.1784 4460 0.0211
0.1788 4470 0.0211
0.1792 4480 0.0197
0.1796 4490 0.0213
0.18 4500 0.02
0.1804 4510 0.0207
0.1808 4520 0.0235
0.1812 4530 0.02
0.1816 4540 0.0215
0.182 4550 0.0201
0.1824 4560 0.0229
0.1828 4570 0.0236
0.1832 4580 0.0202
0.1836 4590 0.0215
0.184 4600 0.0202
0.1844 4610 0.0199
0.1848 4620 0.0171
0.1852 4630 0.0218
0.1856 4640 0.0213
0.186 4650 0.0198
0.1864 4660 0.0203
0.1868 4670 0.0225
0.1872 4680 0.022
0.1876 4690 0.0196
0.188 4700 0.0211
0.1884 4710 0.0208
0.1888 4720 0.021
0.1892 4730 0.0196
0.1896 4740 0.0222
0.19 4750 0.0214
0.1904 4760 0.022
0.1908 4770 0.0193
0.1912 4780 0.0193
0.1916 4790 0.0182
0.192 4800 0.0203
0.1924 4810 0.0184
0.1928 4820 0.0213
0.1932 4830 0.0211
0.1936 4840 0.0185
0.194 4850 0.0208
0.1944 4860 0.0206
0.1948 4870 0.0195
0.1952 4880 0.0185
0.1956 4890 0.0235
0.196 4900 0.0203
0.1964 4910 0.0201
0.1968 4920 0.0193
0.1972 4930 0.0248
0.1976 4940 0.0206
0.198 4950 0.0205
0.1984 4960 0.0193
0.1988 4970 0.0219
0.1992 4980 0.0217
0.1996 4990 0.0203
0.2 5000 0.0202
0.2004 5010 0.0229
0.2008 5020 0.0201
0.2012 5030 0.02
0.2016 5040 0.0206
0.202 5050 0.0197
0.2024 5060 0.0186
0.2028 5070 0.0207
0.2032 5080 0.0203
0.2036 5090 0.0212
0.204 5100 0.0197
0.2044 5110 0.0235
0.2048 5120 0.0223
0.2052 5130 0.02
0.2056 5140 0.0211
0.206 5150 0.0203
0.2064 5160 0.0191
0.2068 5170 0.0182
0.2072 5180 0.0226
0.2076 5190 0.0232
0.208 5200 0.0192
0.2084 5210 0.0231
0.2088 5220 0.0217
0.2092 5230 0.0202
0.2096 5240 0.0232
0.21 5250 0.0193
0.2104 5260 0.0236
0.2108 5270 0.0217
0.2112 5280 0.0201
0.2116 5290 0.0185
0.212 5300 0.0207
0.2124 5310 0.022
0.2128 5320 0.021
0.2132 5330 0.0188
0.2136 5340 0.021
0.214 5350 0.0199
0.2144 5360 0.0213
0.2148 5370 0.0204
0.2152 5380 0.0222
0.2156 5390 0.0182
0.216 5400 0.0217
0.2164 5410 0.0184
0.2168 5420 0.0216
0.2172 5430 0.0193
0.2176 5440 0.0221
0.218 5450 0.021
0.2184 5460 0.0216
0.2188 5470 0.0214
0.2192 5480 0.0199
0.2196 5490 0.0206
0.22 5500 0.0216
0.2204 5510 0.0205
0.2208 5520 0.0199
0.2212 5530 0.0208
0.2216 5540 0.0183
0.222 5550 0.0171
0.2224 5560 0.0205
0.2228 5570 0.0189
0.2232 5580 0.0217
0.2236 5590 0.0203
0.224 5600 0.0207
0.2244 5610 0.0228
0.2248 5620 0.0204
0.2252 5630 0.0197
0.2256 5640 0.0202
0.226 5650 0.0226
0.2264 5660 0.0223
0.2268 5670 0.019
0.2272 5680 0.0197
0.2276 5690 0.019
0.228 5700 0.0194
0.2284 5710 0.024
0.2288 5720 0.0213
0.2292 5730 0.0201
0.2296 5740 0.0207
0.23 5750 0.0217
0.2304 5760 0.0204
0.2308 5770 0.0174
0.2312 5780 0.0196
0.2316 5790 0.0204
0.232 5800 0.0185
0.2324 5810 0.0195
0.2328 5820 0.0231
0.2332 5830 0.0202
0.2336 5840 0.0193
0.234 5850 0.0217
0.2344 5860 0.0194
0.2348 5870 0.0212
0.2352 5880 0.0211
0.2356 5890 0.0208
0.236 5900 0.0195
0.2364 5910 0.0203
0.2368 5920 0.0202
0.2372 5930 0.0183
0.2376 5940 0.02
0.238 5950 0.0215
0.2384 5960 0.0208
0.2388 5970 0.0209
0.2392 5980 0.0196
0.2396 5990 0.0204
0.24 6000 0.0215
0.2404 6010 0.0214
0.2408 6020 0.0204
0.2412 6030 0.0194
0.2416 6040 0.0198
0.242 6050 0.0201
0.2424 6060 0.0204
0.2428 6070 0.0182
0.2432 6080 0.0206
0.2436 6090 0.0194
0.244 6100 0.0172
0.2444 6110 0.023
0.2448 6120 0.0198
0.2452 6130 0.0211
0.2456 6140 0.0204
0.246 6150 0.0196
0.2464 6160 0.0195
0.2468 6170 0.0192
0.2472 6180 0.0209
0.2476 6190 0.0191
0.248 6200 0.0204
0.2484 6210 0.0183
0.2488 6220 0.0219
0.2492 6230 0.0185
0.2496 6240 0.0203
0.25 6250 0.0223
0.2504 6260 0.0179
0.2508 6270 0.021
0.2512 6280 0.0214
0.2516 6290 0.02
0.252 6300 0.018
0.2524 6310 0.0205
0.2528 6320 0.0189
0.2532 6330 0.0201
0.2536 6340 0.0199
0.254 6350 0.021
0.2544 6360 0.02
0.2548 6370 0.0198
0.2552 6380 0.0204
0.2556 6390 0.0214
0.256 6400 0.0199
0.2564 6410 0.0185
0.2568 6420 0.0203
0.2572 6430 0.0221
0.2576 6440 0.0199
0.258 6450 0.017
0.2584 6460 0.0216
0.2588 6470 0.0219
0.2592 6480 0.0207
0.2596 6490 0.0203
0.26 6500 0.0203
0.2604 6510 0.0211
0.2608 6520 0.0189
0.2612 6530 0.0188
0.2616 6540 0.0209
0.262 6550 0.0188
0.2624 6560 0.0182
0.2628 6570 0.0197
0.2632 6580 0.0224
0.2636 6590 0.0188
0.264 6600 0.0197
0.2644 6610 0.0193
0.2648 6620 0.0173
0.2652 6630 0.0196
0.2656 6640 0.0193
0.266 6650 0.0207
0.2664 6660 0.0175
0.2668 6670 0.02
0.2672 6680 0.0201
0.2676 6690 0.0189
0.268 6700 0.0214
0.2684 6710 0.0202
0.2688 6720 0.018
0.2692 6730 0.02
0.2696 6740 0.0207
0.27 6750 0.021
0.2704 6760 0.0223
0.2708 6770 0.0179
0.2712 6780 0.0201
0.2716 6790 0.018
0.272 6800 0.0189
0.2724 6810 0.0212
0.2728 6820 0.0216
0.2732 6830 0.0206
0.2736 6840 0.0213
0.274 6850 0.0196
0.2744 6860 0.0214
0.2748 6870 0.0189
0.2752 6880 0.0206
0.2756 6890 0.0189
0.276 6900 0.0188
0.2764 6910 0.0192
0.2768 6920 0.0228
0.2772 6930 0.0199
0.2776 6940 0.0217
0.278 6950 0.0198
0.2784 6960 0.0202
0.2788 6970 0.0191
0.2792 6980 0.0221
0.2796 6990 0.0188
0.28 7000 0.0208
0.2804 7010 0.02
0.2808 7020 0.019
0.2812 7030 0.0213
0.2816 7040 0.0213
0.282 7050 0.0214
0.2824 7060 0.0164
0.2828 7070 0.0192
0.2832 7080 0.0167
0.2836 7090 0.0198
0.284 7100 0.0201
0.2844 7110 0.0205
0.2848 7120 0.0194
0.2852 7130 0.0224
0.2856 7140 0.0216
0.286 7150 0.0187
0.2864 7160 0.0195
0.2868 7170 0.017
0.2872 7180 0.0187
0.2876 7190 0.018
0.288 7200 0.0182
0.2884 7210 0.0188
0.2888 7220 0.0209
0.2892 7230 0.0188
0.2896 7240 0.0208
0.29 7250 0.0216
0.2904 7260 0.02
0.2908 7270 0.0185
0.2912 7280 0.0206
0.2916 7290 0.0206
0.292 7300 0.0198
0.2924 7310 0.0178
0.2928 7320 0.018
0.2932 7330 0.02
0.2936 7340 0.0201
0.294 7350 0.0196
0.2944 7360 0.0211
0.2948 7370 0.0194
0.2952 7380 0.0221
0.2956 7390 0.0211
0.296 7400 0.0189
0.2964 7410 0.0192
0.2968 7420 0.0199
0.2972 7430 0.0193
0.2976 7440 0.019
0.298 7450 0.0218
0.2984 7460 0.0193
0.2988 7470 0.0215
0.2992 7480 0.0181
0.2996 7490 0.0204
0.3 7500 0.0201
0.3004 7510 0.0187
0.3008 7520 0.0197
0.3012 7530 0.0208
0.3016 7540 0.0216
0.302 7550 0.0188
0.3024 7560 0.019
0.3028 7570 0.0185
0.3032 7580 0.0217
0.3036 7590 0.018
0.304 7600 0.0219
0.3044 7610 0.0215
0.3048 7620 0.0189
0.3052 7630 0.018
0.3056 7640 0.0199
0.306 7650 0.0165
0.3064 7660 0.0202
0.3068 7670 0.0184
0.3072 7680 0.0191
0.3076 7690 0.0197
0.308 7700 0.0213
0.3084 7710 0.0178
0.3088 7720 0.0191
0.3092 7730 0.0187
0.3096 7740 0.0208
0.31 7750 0.0206
0.3104 7760 0.0205
0.3108 7770 0.0198
0.3112 7780 0.0199
0.3116 7790 0.0182
0.312 7800 0.0191
0.3124 7810 0.018
0.3128 7820 0.0185
0.3132 7830 0.0196
0.3136 7840 0.0175
0.314 7850 0.0189
0.3144 7860 0.0192
0.3148 7870 0.0198
0.3152 7880 0.0178
0.3156 7890 0.0173
0.316 7900 0.0182
0.3164 7910 0.0184
0.3168 7920 0.0207
0.3172 7930 0.0215
0.3176 7940 0.0201
0.318 7950 0.0176
0.3184 7960 0.019
0.3188 7970 0.0174
0.3192 7980 0.0203
0.3196 7990 0.0178
0.32 8000 0.0197
0.3204 8010 0.0177
0.3208 8020 0.0206
0.3212 8030 0.0195
0.3216 8040 0.0195
0.322 8050 0.0192
0.3224 8060 0.0195
0.3228 8070 0.0168
0.3232 8080 0.0212
0.3236 8090 0.0178
0.324 8100 0.0203
0.3244 8110 0.0184
0.3248 8120 0.0198
0.3252 8130 0.0194
0.3256 8140 0.0188
0.326 8150 0.0178
0.3264 8160 0.0182
0.3268 8170 0.0179
0.3272 8180 0.0186
0.3276 8190 0.0158
0.328 8200 0.0181
0.3284 8210 0.0198
0.3288 8220 0.0196
0.3292 8230 0.0197
0.3296 8240 0.0204
0.33 8250 0.0189
0.3304 8260 0.0208
0.3308 8270 0.019
0.3312 8280 0.0198
0.3316 8290 0.022
0.332 8300 0.018
0.3324 8310 0.0185
0.3328 8320 0.0168
0.3332 8330 0.0217
0.3336 8340 0.0179
0.334 8350 0.0173
0.3344 8360 0.0171
0.3348 8370 0.0167
0.3352 8380 0.019
0.3356 8390 0.0179
0.336 8400 0.0184
0.3364 8410 0.0185
0.3368 8420 0.0173
0.3372 8430 0.0181
0.3376 8440 0.017
0.338 8450 0.0173
0.3384 8460 0.0188
0.3388 8470 0.0166
0.3392 8480 0.0192
0.3396 8490 0.0216
0.34 8500 0.0178
0.3404 8510 0.0203
0.3408 8520 0.0199
0.3412 8530 0.0188
0.3416 8540 0.021
0.342 8550 0.0182
0.3424 8560 0.019
0.3428 8570 0.0202
0.3432 8580 0.0152
0.3436 8590 0.0195
0.344 8600 0.0188
0.3444 8610 0.0179
0.3448 8620 0.021
0.3452 8630 0.0189
0.3456 8640 0.019
0.346 8650 0.0203
0.3464 8660 0.0198
0.3468 8670 0.0191
0.3472 8680 0.0203
0.3476 8690 0.0201
0.348 8700 0.0183
0.3484 8710 0.0167
0.3488 8720 0.0177
0.3492 8730 0.0218
0.3496 8740 0.021
0.35 8750 0.0182
0.3504 8760 0.0209
0.3508 8770 0.0194
0.3512 8780 0.0194
0.3516 8790 0.0186
0.352 8800 0.0194
0.3524 8810 0.0179
0.3528 8820 0.0219
0.3532 8830 0.0189
0.3536 8840 0.0199
0.354 8850 0.0202
0.3544 8860 0.0195
0.3548 8870 0.0197
0.3552 8880 0.0182
0.3556 8890 0.0197
0.356 8900 0.0201
0.3564 8910 0.0188
0.3568 8920 0.021
0.3572 8930 0.0195
0.3576 8940 0.0193
0.358 8950 0.0185
0.3584 8960 0.0216
0.3588 8970 0.019
0.3592 8980 0.0179
0.3596 8990 0.0181
0.36 9000 0.0214
0.3604 9010 0.0183
0.3608 9020 0.0183
0.3612 9030 0.0176
0.3616 9040 0.0223
0.362 9050 0.0181
0.3624 9060 0.0191
0.3628 9070 0.0196
0.3632 9080 0.0192
0.3636 9090 0.0222
0.364 9100 0.0165
0.3644 9110 0.0178
0.3648 9120 0.02
0.3652 9130 0.0185
0.3656 9140 0.0179
0.366 9150 0.0191
0.3664 9160 0.0213
0.3668 9170 0.0183
0.3672 9180 0.0186
0.3676 9190 0.0192
0.368 9200 0.0182
0.3684 9210 0.0181
0.3688 9220 0.0194
0.3692 9230 0.0193
0.3696 9240 0.0166
0.37 9250 0.0181
0.3704 9260 0.019
0.3708 9270 0.0196
0.3712 9280 0.0192
0.3716 9290 0.0178
0.372 9300 0.0186
0.3724 9310 0.0196
0.3728 9320 0.0236
0.3732 9330 0.019
0.3736 9340 0.0198
0.374 9350 0.0204
0.3744 9360 0.0169
0.3748 9370 0.0212
0.3752 9380 0.0202
0.3756 9390 0.0187
0.376 9400 0.0203
0.3764 9410 0.0191
0.3768 9420 0.0189
0.3772 9430 0.0167
0.3776 9440 0.0178
0.378 9450 0.0199
0.3784 9460 0.0193
0.3788 9470 0.0205
0.3792 9480 0.0202
0.3796 9490 0.0185
0.38 9500 0.0177
0.3804 9510 0.0185
0.3808 9520 0.021
0.3812 9530 0.0152
0.3816 9540 0.0201
0.382 9550 0.0181
0.3824 9560 0.02
0.3828 9570 0.0179
0.3832 9580 0.0214
0.3836 9590 0.0205
0.384 9600 0.018
0.3844 9610 0.0194
0.3848 9620 0.0188
0.3852 9630 0.0189
0.3856 9640 0.0179
0.386 9650 0.0217
0.3864 9660 0.0184
0.3868 9670 0.0206
0.3872 9680 0.0188
0.3876 9690 0.0176
0.388 9700 0.0188
0.3884 9710 0.0185
0.3888 9720 0.0207
0.3892 9730 0.0186
0.3896 9740 0.0192
0.39 9750 0.0183
0.3904 9760 0.0198
0.3908 9770 0.0185
0.3912 9780 0.0186
0.3916 9790 0.0191
0.392 9800 0.0186
0.3924 9810 0.0198
0.3928 9820 0.0181
0.3932 9830 0.0197
0.3936 9840 0.0197
0.394 9850 0.0187
0.3944 9860 0.02
0.3948 9870 0.021
0.3952 9880 0.0178
0.3956 9890 0.0175
0.396 9900 0.0189
0.3964 9910 0.02
0.3968 9920 0.0162
0.3972 9930 0.0202
0.3976 9940 0.0185
0.398 9950 0.0186
0.3984 9960 0.0166
0.3988 9970 0.0182
0.3992 9980 0.0178
0.3996 9990 0.0179
0.4 10000 0.0182
0.4004 10010 0.019
0.4008 10020 0.0184
0.4012 10030 0.0202
0.4016 10040 0.0207
0.402 10050 0.0193
0.4024 10060 0.0174
0.4028 10070 0.0177
0.4032 10080 0.0194
0.4036 10090 0.0184
0.404 10100 0.0187
0.4044 10110 0.0182
0.4048 10120 0.0184
0.4052 10130 0.0194
0.4056 10140 0.0203
0.406 10150 0.02
0.4064 10160 0.0193
0.4068 10170 0.0189
0.4072 10180 0.0207
0.4076 10190 0.018
0.408 10200 0.0192
0.4084 10210 0.0208
0.4088 10220 0.0197
0.4092 10230 0.0174
0.4096 10240 0.0202
0.41 10250 0.0208
0.4104 10260 0.0204
0.4108 10270 0.02
0.4112 10280 0.0188
0.4116 10290 0.0164
0.412 10300 0.0173
0.4124 10310 0.0179
0.4128 10320 0.019
0.4132 10330 0.0204
0.4136 10340 0.0192
0.414 10350 0.0188
0.4144 10360 0.0182
0.4148 10370 0.0185
0.4152 10380 0.0187
0.4156 10390 0.0192
0.416 10400 0.0173
0.4164 10410 0.0195
0.4168 10420 0.0189
0.4172 10430 0.0195
0.4176 10440 0.0175
0.418 10450 0.0197
0.4184 10460 0.0203
0.4188 10470 0.0158
0.4192 10480 0.019
0.4196 10490 0.0174
0.42 10500 0.0175
0.4204 10510 0.0181
0.4208 10520 0.019
0.4212 10530 0.0193
0.4216 10540 0.0202
0.422 10550 0.019
0.4224 10560 0.02
0.4228 10570 0.0182
0.4232 10580 0.0161
0.4236 10590 0.0195
0.424 10600 0.0203
0.4244 10610 0.0212
0.4248 10620 0.0166
0.4252 10630 0.0167
0.4256 10640 0.0202
0.426 10650 0.0172
0.4264 10660 0.017
0.4268 10670 0.0186
0.4272 10680 0.0166
0.4276 10690 0.0179
0.428 10700 0.0167
0.4284 10710 0.0185
0.4288 10720 0.0197
0.4292 10730 0.0206
0.4296 10740 0.018
0.43 10750 0.0178
0.4304 10760 0.0193
0.4308 10770 0.0184
0.4312 10780 0.0181
0.4316 10790 0.0196
0.432 10800 0.0196
0.4324 10810 0.02
0.4328 10820 0.0185
0.4332 10830 0.0164
0.4336 10840 0.0178
0.434 10850 0.0188
0.4344 10860 0.0173
0.4348 10870 0.0191
0.4352 10880 0.0185
0.4356 10890 0.0165
0.436 10900 0.018
0.4364 10910 0.0179
0.4368 10920 0.0193
0.4372 10930 0.0178
0.4376 10940 0.0198
0.438 10950 0.0176
0.4384 10960 0.0182
0.4388 10970 0.0175
0.4392 10980 0.0208
0.4396 10990 0.0179
0.44 11000 0.0182
0.4404 11010 0.0188
0.4408 11020 0.0191
0.4412 11030 0.0184
0.4416 11040 0.0185
0.442 11050 0.018
0.4424 11060 0.0195
0.4428 11070 0.0189
0.4432 11080 0.0195
0.4436 11090 0.0181
0.444 11100 0.0182
0.4444 11110 0.0184
0.4448 11120 0.0179
0.4452 11130 0.0201
0.4456 11140 0.0193
0.446 11150 0.0172
0.4464 11160 0.018
0.4468 11170 0.0173
0.4472 11180 0.0174
0.4476 11190 0.0184
0.448 11200 0.0183
0.4484 11210 0.018
0.4488 11220 0.0188
0.4492 11230 0.0209
0.4496 11240 0.0178
0.45 11250 0.0198
0.4504 11260 0.017
0.4508 11270 0.0195
0.4512 11280 0.0198
0.4516 11290 0.0196
0.452 11300 0.0198
0.4524 11310 0.0189
0.4528 11320 0.0189
0.4532 11330 0.0156
0.4536 11340 0.0184
0.454 11350 0.0186
0.4544 11360 0.0206
0.4548 11370 0.0174
0.4552 11380 0.018
0.4556 11390 0.0184
0.456 11400 0.018
0.4564 11410 0.0209
0.4568 11420 0.0172
0.4572 11430 0.0163
0.4576 11440 0.0214
0.458 11450 0.0165
0.4584 11460 0.0182
0.4588 11470 0.0209
0.4592 11480 0.0193
0.4596 11490 0.0184
0.46 11500 0.0193
0.4604 11510 0.0193
0.4608 11520 0.018
0.4612 11530 0.0174
0.4616 11540 0.0162
0.462 11550 0.0175
0.4624 11560 0.0175
0.4628 11570 0.0192
0.4632 11580 0.0197
0.4636 11590 0.0171
0.464 11600 0.0196
0.4644 11610 0.0191
0.4648 11620 0.0207
0.4652 11630 0.019
0.4656 11640 0.0185
0.466 11650 0.0193
0.4664 11660 0.0193
0.4668 11670 0.0176
0.4672 11680 0.0196
0.4676 11690 0.0203
0.468 11700 0.018
0.4684 11710 0.0197
0.4688 11720 0.0202
0.4692 11730 0.0168
0.4696 11740 0.0212
0.47 11750 0.0186
0.4704 11760 0.0203
0.4708 11770 0.016
0.4712 11780 0.0181
0.4716 11790 0.0181
0.472 11800 0.019
0.4724 11810 0.0193
0.4728 11820 0.0165
0.4732 11830 0.016
0.4736 11840 0.0172
0.474 11850 0.0179
0.4744 11860 0.0181
0.4748 11870 0.0164
0.4752 11880 0.0176
0.4756 11890 0.017
0.476 11900 0.0172
0.4764 11910 0.018
0.4768 11920 0.0184
0.4772 11930 0.0166
0.4776 11940 0.0185
0.478 11950 0.0161
0.4784 11960 0.0209
0.4788 11970 0.0163
0.4792 11980 0.0193
0.4796 11990 0.0176
0.48 12000 0.0176
0.4804 12010 0.0186
0.4808 12020 0.0179
0.4812 12030 0.019
0.4816 12040 0.0186
0.482 12050 0.0179
0.4824 12060 0.0187
0.4828 12070 0.0173
0.4832 12080 0.0171
0.4836 12090 0.017
0.484 12100 0.0182
0.4844 12110 0.0186
0.4848 12120 0.0182
0.4852 12130 0.0188
0.4856 12140 0.0176
0.486 12150 0.0194
0.4864 12160 0.0189
0.4868 12170 0.017
0.4872 12180 0.0198
0.4876 12190 0.0182
0.488 12200 0.017
0.4884 12210 0.0203
0.4888 12220 0.0182
0.4892 12230 0.0182
0.4896 12240 0.0206
0.49 12250 0.0168
0.4904 12260 0.0199
0.4908 12270 0.0188
0.4912 12280 0.0181
0.4916 12290 0.0191
0.492 12300 0.0184
0.4924 12310 0.0206
0.4928 12320 0.0186
0.4932 12330 0.018
0.4936 12340 0.0187
0.494 12350 0.0208
0.4944 12360 0.02
0.4948 12370 0.0182
0.4952 12380 0.0169
0.4956 12390 0.0183
0.496 12400 0.0192
0.4964 12410 0.0165
0.4968 12420 0.0182
0.4972 12430 0.017
0.4976 12440 0.0217
0.498 12450 0.0192
0.4984 12460 0.0195
0.4988 12470 0.0201
0.4992 12480 0.0198
0.4996 12490 0.0188
0.5 12500 0.0174
0.5004 12510 0.0172
0.5008 12520 0.0195
0.5012 12530 0.0163
0.5016 12540 0.0194
0.502 12550 0.0199
0.5024 12560 0.0178
0.5028 12570 0.0189
0.5032 12580 0.0194
0.5036 12590 0.0199
0.504 12600 0.0189
0.5044 12610 0.0199
0.5048 12620 0.0178
0.5052 12630 0.0179
0.5056 12640 0.0177
0.506 12650 0.0188
0.5064 12660 0.0173
0.5068 12670 0.0191
0.5072 12680 0.0181
0.5076 12690 0.0203
0.508 12700 0.0194
0.5084 12710 0.0165
0.5088 12720 0.0186
0.5092 12730 0.0191
0.5096 12740 0.0189
0.51 12750 0.0174
0.5104 12760 0.0181
0.5108 12770 0.0224
0.5112 12780 0.0203
0.5116 12790 0.0186
0.512 12800 0.0156
0.5124 12810 0.0172
0.5128 12820 0.0195
0.5132 12830 0.0176
0.5136 12840 0.02
0.514 12850 0.0179
0.5144 12860 0.0193
0.5148 12870 0.0196
0.5152 12880 0.0176
0.5156 12890 0.0185
0.516 12900 0.0164
0.5164 12910 0.0198
0.5168 12920 0.015
0.5172 12930 0.0167
0.5176 12940 0.0162
0.518 12950 0.0174
0.5184 12960 0.0181
0.5188 12970 0.0183
0.5192 12980 0.0169
0.5196 12990 0.019
0.52 13000 0.0198
0.5204 13010 0.0198
0.5208 13020 0.0175
0.5212 13030 0.0198
0.5216 13040 0.0198
0.522 13050 0.0178
0.5224 13060 0.019
0.5228 13070 0.0154
0.5232 13080 0.0178
0.5236 13090 0.019
0.524 13100 0.0198
0.5244 13110 0.0174
0.5248 13120 0.0174
0.5252 13130 0.0172
0.5256 13140 0.0164
0.526 13150 0.0174
0.5264 13160 0.0169
0.5268 13170 0.019
0.5272 13180 0.0196
0.5276 13190 0.0174
0.528 13200 0.0168
0.5284 13210 0.0174
0.5288 13220 0.0202
0.5292 13230 0.0167
0.5296 13240 0.0177
0.53 13250 0.0186
0.5304 13260 0.0161
0.5308 13270 0.0166
0.5312 13280 0.016
0.5316 13290 0.0197
0.532 13300 0.0178
0.5324 13310 0.0157
0.5328 13320 0.0183
0.5332 13330 0.0185
0.5336 13340 0.0206
0.534 13350 0.0183
0.5344 13360 0.0173
0.5348 13370 0.0191
0.5352 13380 0.0184
0.5356 13390 0.0177
0.536 13400 0.0176
0.5364 13410 0.0182
0.5368 13420 0.0165
0.5372 13430 0.0187
0.5376 13440 0.0189
0.538 13450 0.0153
0.5384 13460 0.0178
0.5388 13470 0.0177
0.5392 13480 0.0172
0.5396 13490 0.0191
0.54 13500 0.0157
0.5404 13510 0.0182
0.5408 13520 0.0182
0.5412 13530 0.0164
0.5416 13540 0.0182
0.542 13550 0.0188
0.5424 13560 0.0178
0.5428 13570 0.0167
0.5432 13580 0.0166
0.5436 13590 0.0194
0.544 13600 0.018
0.5444 13610 0.0179
0.5448 13620 0.019
0.5452 13630 0.019
0.5456 13640 0.0181
0.546 13650 0.0218
0.5464 13660 0.0174
0.5468 13670 0.0171
0.5472 13680 0.0194
0.5476 13690 0.0202
0.548 13700 0.0193
0.5484 13710 0.0178
0.5488 13720 0.0171
0.5492 13730 0.0173
0.5496 13740 0.019
0.55 13750 0.0179
0.5504 13760 0.0173
0.5508 13770 0.0187
0.5512 13780 0.0211
0.5516 13790 0.0176
0.552 13800 0.0195
0.5524 13810 0.0186
0.5528 13820 0.0181
0.5532 13830 0.0191
0.5536 13840 0.0168
0.554 13850 0.0183
0.5544 13860 0.0171
0.5548 13870 0.0194
0.5552 13880 0.0179
0.5556 13890 0.0177
0.556 13900 0.0181
0.5564 13910 0.018
0.5568 13920 0.0182
0.5572 13930 0.0163
0.5576 13940 0.0193
0.558 13950 0.0184
0.5584 13960 0.0202
0.5588 13970 0.0167
0.5592 13980 0.0187
0.5596 13990 0.0182
0.56 14000 0.0194
0.5604 14010 0.0155
0.5608 14020 0.0189
0.5612 14030 0.0171
0.5616 14040 0.0173
0.562 14050 0.0178
0.5624 14060 0.0178
0.5628 14070 0.0158
0.5632 14080 0.0185
0.5636 14090 0.0154
0.564 14100 0.0181
0.5644 14110 0.0177
0.5648 14120 0.0185
0.5652 14130 0.0161
0.5656 14140 0.0166
0.566 14150 0.0196
0.5664 14160 0.0183
0.5668 14170 0.0166
0.5672 14180 0.0176
0.5676 14190 0.0152
0.568 14200 0.0174
0.5684 14210 0.0193
0.5688 14220 0.0182
0.5692 14230 0.0168
0.5696 14240 0.0186
0.57 14250 0.0169
0.5704 14260 0.0166
0.5708 14270 0.018
0.5712 14280 0.0204
0.5716 14290 0.0153
0.572 14300 0.018
0.5724 14310 0.0187
0.5728 14320 0.0174
0.5732 14330 0.016
0.5736 14340 0.0161
0.574 14350 0.0194
0.5744 14360 0.0196
0.5748 14370 0.0188
0.5752 14380 0.0189
0.5756 14390 0.0172
0.576 14400 0.0173
0.5764 14410 0.019
0.5768 14420 0.0177
0.5772 14430 0.0176
0.5776 14440 0.0185
0.578 14450 0.0162
0.5784 14460 0.0168
0.5788 14470 0.0166
0.5792 14480 0.0159
0.5796 14490 0.0179
0.58 14500 0.0178
0.5804 14510 0.019
0.5808 14520 0.0182
0.5812 14530 0.0191
0.5816 14540 0.0173
0.582 14550 0.018
0.5824 14560 0.0194
0.5828 14570 0.0174
0.5832 14580 0.017
0.5836 14590 0.017
0.584 14600 0.0176
0.5844 14610 0.0166
0.5848 14620 0.0192
0.5852 14630 0.017
0.5856 14640 0.0201
0.586 14650 0.018
0.5864 14660 0.02
0.5868 14670 0.0196
0.5872 14680 0.02
0.5876 14690 0.0166
0.588 14700 0.0169
0.5884 14710 0.0165
0.5888 14720 0.0177
0.5892 14730 0.0175
0.5896 14740 0.0185
0.59 14750 0.0166
0.5904 14760 0.0181
0.5908 14770 0.017
0.5912 14780 0.0172
0.5916 14790 0.0181
0.592 14800 0.0171
0.5924 14810 0.0177
0.5928 14820 0.0204
0.5932 14830 0.0168
0.5936 14840 0.0163
0.594 14850 0.0176
0.5944 14860 0.0169
0.5948 14870 0.0196
0.5952 14880 0.0192
0.5956 14890 0.019
0.596 14900 0.0182
0.5964 14910 0.0174
0.5968 14920 0.0186
0.5972 14930 0.0164
0.5976 14940 0.0178
0.598 14950 0.0171
0.5984 14960 0.0185
0.5988 14970 0.0172
0.5992 14980 0.0167
0.5996 14990 0.0171
0.6 15000 0.0193
0.6004 15010 0.0158
0.6008 15020 0.0196
0.6012 15030 0.0167
0.6016 15040 0.0192
0.602 15050 0.0182
0.6024 15060 0.0146
0.6028 15070 0.0152
0.6032 15080 0.0195
0.6036 15090 0.0203
0.604 15100 0.0168
0.6044 15110 0.0177
0.6048 15120 0.0161
0.6052 15130 0.0175
0.6056 15140 0.0185
0.606 15150 0.0157
0.6064 15160 0.0199
0.6068 15170 0.0212
0.6072 15180 0.0215
0.6076 15190 0.0185
0.608 15200 0.0191
0.6084 15210 0.0202
0.6088 15220 0.018
0.6092 15230 0.0174
0.6096 15240 0.0184
0.61 15250 0.0181
0.6104 15260 0.0183
0.6108 15270 0.0176
0.6112 15280 0.0187
0.6116 15290 0.0178
0.612 15300 0.0184
0.6124 15310 0.0159
0.6128 15320 0.017
0.6132 15330 0.0161
0.6136 15340 0.0167
0.614 15350 0.0173
0.6144 15360 0.0163
0.6148 15370 0.0159
0.6152 15380 0.018
0.6156 15390 0.0161
0.616 15400 0.0202
0.6164 15410 0.0176
0.6168 15420 0.0179
0.6172 15430 0.0201
0.6176 15440 0.0162
0.618 15450 0.0166
0.6184 15460 0.0159
0.6188 15470 0.0192
0.6192 15480 0.0173
0.6196 15490 0.0169
0.62 15500 0.019
0.6204 15510 0.0178
0.6208 15520 0.0179
0.6212 15530 0.0214
0.6216 15540 0.0189
0.622 15550 0.0159
0.6224 15560 0.016
0.6228 15570 0.0188
0.6232 15580 0.0186
0.6236 15590 0.0192
0.624 15600 0.0156
0.6244 15610 0.018
0.6248 15620 0.0174
0.6252 15630 0.0167
0.6256 15640 0.0145
0.626 15650 0.017
0.6264 15660 0.0164
0.6268 15670 0.0185
0.6272 15680 0.0191
0.6276 15690 0.0192
0.628 15700 0.0153
0.6284 15710 0.0166
0.6288 15720 0.0152
0.6292 15730 0.0177
0.6296 15740 0.0185
0.63 15750 0.0169
0.6304 15760 0.0161
0.6308 15770 0.0181
0.6312 15780 0.0157
0.6316 15790 0.0167
0.632 15800 0.0176
0.6324 15810 0.0193
0.6328 15820 0.0172
0.6332 15830 0.0188
0.6336 15840 0.0179
0.634 15850 0.0196
0.6344 15860 0.0162
0.6348 15870 0.0182
0.6352 15880 0.0174
0.6356 15890 0.0165
0.636 15900 0.0173
0.6364 15910 0.0193
0.6368 15920 0.0161
0.6372 15930 0.0212
0.6376 15940 0.0179
0.638 15950 0.0181
0.6384 15960 0.0212
0.6388 15970 0.0193
0.6392 15980 0.0179
0.6396 15990 0.0172
0.64 16000 0.0172
0.6404 16010 0.0166
0.6408 16020 0.0163
0.6412 16030 0.0207
0.6416 16040 0.015
0.642 16050 0.0207
0.6424 16060 0.0171
0.6428 16070 0.0158
0.6432 16080 0.0176
0.6436 16090 0.0176
0.644 16100 0.0174
0.6444 16110 0.0165
0.6448 16120 0.0202
0.6452 16130 0.0186
0.6456 16140 0.0172
0.646 16150 0.0149
0.6464 16160 0.0168
0.6468 16170 0.0168
0.6472 16180 0.0171
0.6476 16190 0.0185
0.648 16200 0.0152
0.6484 16210 0.0158
0.6488 16220 0.0177
0.6492 16230 0.0186
0.6496 16240 0.019
0.65 16250 0.0193
0.6504 16260 0.0194
0.6508 16270 0.0185
0.6512 16280 0.0169
0.6516 16290 0.0178
0.652 16300 0.0191
0.6524 16310 0.0175
0.6528 16320 0.0171
0.6532 16330 0.0169
0.6536 16340 0.0162
0.654 16350 0.0187
0.6544 16360 0.0192
0.6548 16370 0.0186
0.6552 16380 0.0188
0.6556 16390 0.0171
0.656 16400 0.0173
0.6564 16410 0.0211
0.6568 16420 0.0175
0.6572 16430 0.0178
0.6576 16440 0.0186
0.658 16450 0.0186
0.6584 16460 0.0182
0.6588 16470 0.0173
0.6592 16480 0.0212
0.6596 16490 0.0184
0.66 16500 0.0161
0.6604 16510 0.0156
0.6608 16520 0.0176
0.6612 16530 0.0171
0.6616 16540 0.0168
0.662 16550 0.017
0.6624 16560 0.0189
0.6628 16570 0.0174
0.6632 16580 0.0182
0.6636 16590 0.0185
0.664 16600 0.0195
0.6644 16610 0.0156
0.6648 16620 0.0188
0.6652 16630 0.0177
0.6656 16640 0.0187
0.666 16650 0.0165
0.6664 16660 0.0152
0.6668 16670 0.0178
0.6672 16680 0.0182
0.6676 16690 0.0151
0.668 16700 0.0184
0.6684 16710 0.0191
0.6688 16720 0.0185
0.6692 16730 0.0192
0.6696 16740 0.0176
0.67 16750 0.0185
0.6704 16760 0.0168
0.6708 16770 0.0157
0.6712 16780 0.0168
0.6716 16790 0.0195
0.672 16800 0.0156
0.6724 16810 0.0176
0.6728 16820 0.0181
0.6732 16830 0.0165
0.6736 16840 0.0205
0.674 16850 0.0208
0.6744 16860 0.0166
0.6748 16870 0.0187
0.6752 16880 0.0187
0.6756 16890 0.0221
0.676 16900 0.0173
0.6764 16910 0.0157
0.6768 16920 0.0158
0.6772 16930 0.0169
0.6776 16940 0.0198
0.678 16950 0.0176
0.6784 16960 0.017
0.6788 16970 0.0186
0.6792 16980 0.0175
0.6796 16990 0.0186
0.68 17000 0.017
0.6804 17010 0.0168
0.6808 17020 0.0182
0.6812 17030 0.0177
0.6816 17040 0.0171
0.682 17050 0.0165
0.6824 17060 0.0152
0.6828 17070 0.0198
0.6832 17080 0.0178
0.6836 17090 0.0174
0.684 17100 0.0152
0.6844 17110 0.0193
0.6848 17120 0.0173
0.6852 17130 0.0154
0.6856 17140 0.016
0.686 17150 0.0203
0.6864 17160 0.0178
0.6868 17170 0.017
0.6872 17180 0.0166
0.6876 17190 0.0171
0.688 17200 0.0181
0.6884 17210 0.0164
0.6888 17220 0.0176
0.6892 17230 0.0154
0.6896 17240 0.0174
0.69 17250 0.0176
0.6904 17260 0.0177
0.6908 17270 0.0181
0.6912 17280 0.0167
0.6916 17290 0.0157
0.692 17300 0.0178
0.6924 17310 0.0172
0.6928 17320 0.0166
0.6932 17330 0.0178
0.6936 17340 0.0195
0.694 17350 0.0164
0.6944 17360 0.0182
0.6948 17370 0.0174
0.6952 17380 0.0165
0.6956 17390 0.017
0.696 17400 0.017
0.6964 17410 0.0164
0.6968 17420 0.0179
0.6972 17430 0.0176
0.6976 17440 0.0177
0.698 17450 0.0169
0.6984 17460 0.0167
0.6988 17470 0.0157
0.6992 17480 0.0174
0.6996 17490 0.015
0.7 17500 0.0167
0.7004 17510 0.0159
0.7008 17520 0.0165
0.7012 17530 0.0187
0.7016 17540 0.0144
0.702 17550 0.018
0.7024 17560 0.0175
0.7028 17570 0.0168
0.7032 17580 0.0168
0.7036 17590 0.0165
0.704 17600 0.0174
0.7044 17610 0.0202
0.7048 17620 0.0178
0.7052 17630 0.018
0.7056 17640 0.0161
0.706 17650 0.0152
0.7064 17660 0.0192
0.7068 17670 0.0162
0.7072 17680 0.0188
0.7076 17690 0.0161
0.708 17700 0.0189
0.7084 17710 0.0175
0.7088 17720 0.0181
0.7092 17730 0.0179
0.7096 17740 0.0181
0.71 17750 0.0162
0.7104 17760 0.0167
0.7108 17770 0.0188
0.7112 17780 0.017
0.7116 17790 0.018
0.712 17800 0.0186
0.7124 17810 0.0171
0.7128 17820 0.0162
0.7132 17830 0.0174
0.7136 17840 0.0158
0.714 17850 0.0168
0.7144 17860 0.0153
0.7148 17870 0.0176
0.7152 17880 0.0169
0.7156 17890 0.0173
0.716 17900 0.0172
0.7164 17910 0.0164
0.7168 17920 0.0187
0.7172 17930 0.0177
0.7176 17940 0.0173
0.718 17950 0.0179
0.7184 17960 0.0165
0.7188 17970 0.0172
0.7192 17980 0.0182
0.7196 17990 0.0189
0.72 18000 0.0167
0.7204 18010 0.0149
0.7208 18020 0.0173
0.7212 18030 0.0167
0.7216 18040 0.0163
0.722 18050 0.0171
0.7224 18060 0.0183
0.7228 18070 0.0189
0.7232 18080 0.0178
0.7236 18090 0.018
0.724 18100 0.0191
0.7244 18110 0.0158
0.7248 18120 0.0165
0.7252 18130 0.0163
0.7256 18140 0.0163
0.726 18150 0.0177
0.7264 18160 0.017
0.7268 18170 0.0168
0.7272 18180 0.0164
0.7276 18190 0.0161
0.728 18200 0.0176
0.7284 18210 0.0189
0.7288 18220 0.0165
0.7292 18230 0.0187
0.7296 18240 0.018
0.73 18250 0.017
0.7304 18260 0.0181
0.7308 18270 0.017
0.7312 18280 0.0173
0.7316 18290 0.0168
0.732 18300 0.0156
0.7324 18310 0.0157
0.7328 18320 0.0191
0.7332 18330 0.0147
0.7336 18340 0.016
0.734 18350 0.0175
0.7344 18360 0.0194
0.7348 18370 0.0188
0.7352 18380 0.0178
0.7356 18390 0.0177
0.736 18400 0.0159
0.7364 18410 0.0158
0.7368 18420 0.0161
0.7372 18430 0.0155
0.7376 18440 0.0161
0.738 18450 0.019
0.7384 18460 0.0187
0.7388 18470 0.0156
0.7392 18480 0.0157
0.7396 18490 0.0188
0.74 18500 0.018
0.7404 18510 0.0182
0.7408 18520 0.0157
0.7412 18530 0.0185
0.7416 18540 0.016
0.742 18550 0.0164
0.7424 18560 0.0166
0.7428 18570 0.0165
0.7432 18580 0.0185
0.7436 18590 0.0184
0.744 18600 0.0206
0.7444 18610 0.0186
0.7448 18620 0.0189
0.7452 18630 0.017
0.7456 18640 0.0174
0.746 18650 0.0186
0.7464 18660 0.0188
0.7468 18670 0.0167
0.7472 18680 0.0167
0.7476 18690 0.0177
0.748 18700 0.0161
0.7484 18710 0.0166
0.7488 18720 0.0199
0.7492 18730 0.0172
0.7496 18740 0.017
0.75 18750 0.0157
0.7504 18760 0.0187
0.7508 18770 0.0164
0.7512 18780 0.0189
0.7516 18790 0.0168
0.752 18800 0.0188
0.7524 18810 0.0172
0.7528 18820 0.0183
0.7532 18830 0.0182
0.7536 18840 0.0172
0.754 18850 0.019
0.7544 18860 0.0173
0.7548 18870 0.016
0.7552 18880 0.015
0.7556 18890 0.0168
0.756 18900 0.0158
0.7564 18910 0.0169
0.7568 18920 0.0163
0.7572 18930 0.0162
0.7576 18940 0.0187
0.758 18950 0.0172
0.7584 18960 0.0173
0.7588 18970 0.0176
0.7592 18980 0.0182
0.7596 18990 0.0194
0.76 19000 0.0162
0.7604 19010 0.0188
0.7608 19020 0.0193
0.7612 19030 0.02
0.7616 19040 0.0166
0.762 19050 0.016
0.7624 19060 0.017
0.7628 19070 0.017
0.7632 19080 0.0164
0.7636 19090 0.0151
0.764 19100 0.0163
0.7644 19110 0.0196
0.7648 19120 0.0157
0.7652 19130 0.0168
0.7656 19140 0.0176
0.766 19150 0.0185
0.7664 19160 0.0172
0.7668 19170 0.0169
0.7672 19180 0.0199
0.7676 19190 0.0146
0.768 19200 0.0183
0.7684 19210 0.0189
0.7688 19220 0.017
0.7692 19230 0.0169
0.7696 19240 0.0201
0.77 19250 0.0174
0.7704 19260 0.0171
0.7708 19270 0.0175
0.7712 19280 0.0178
0.7716 19290 0.0166
0.772 19300 0.0162
0.7724 19310 0.0184
0.7728 19320 0.017
0.7732 19330 0.0177
0.7736 19340 0.0186
0.774 19350 0.0187
0.7744 19360 0.0184
0.7748 19370 0.0158
0.7752 19380 0.0159
0.7756 19390 0.0154
0.776 19400 0.0176
0.7764 19410 0.0174
0.7768 19420 0.0169
0.7772 19430 0.0179
0.7776 19440 0.0175
0.778 19450 0.0174
0.7784 19460 0.0164
0.7788 19470 0.0173
0.7792 19480 0.018
0.7796 19490 0.018
0.78 19500 0.0186
0.7804 19510 0.0164
0.7808 19520 0.0144
0.7812 19530 0.0182
0.7816 19540 0.0176
0.782 19550 0.0196
0.7824 19560 0.0194
0.7828 19570 0.0145
0.7832 19580 0.0192
0.7836 19590 0.018
0.784 19600 0.0175
0.7844 19610 0.0164
0.7848 19620 0.0177
0.7852 19630 0.0169
0.7856 19640 0.018
0.786 19650 0.0204
0.7864 19660 0.0174
0.7868 19670 0.0153
0.7872 19680 0.0163
0.7876 19690 0.0188
0.788 19700 0.0176
0.7884 19710 0.0191
0.7888 19720 0.0165
0.7892 19730 0.0204
0.7896 19740 0.0179
0.79 19750 0.0188
0.7904 19760 0.0154
0.7908 19770 0.0176
0.7912 19780 0.017
0.7916 19790 0.0175
0.792 19800 0.0177
0.7924 19810 0.0185
0.7928 19820 0.0157
0.7932 19830 0.0186
0.7936 19840 0.0191
0.794 19850 0.0163
0.7944 19860 0.0174
0.7948 19870 0.017
0.7952 19880 0.0146
0.7956 19890 0.0162
0.796 19900 0.0173
0.7964 19910 0.0172
0.7968 19920 0.016
0.7972 19930 0.0178
0.7976 19940 0.018
0.798 19950 0.0189
0.7984 19960 0.0148
0.7988 19970 0.0178
0.7992 19980 0.0186
0.7996 19990 0.0184
0.8 20000 0.019
0.8004 20010 0.0158
0.8008 20020 0.0167
0.8012 20030 0.0146
0.8016 20040 0.0155
0.802 20050 0.0193
0.8024 20060 0.0179
0.8028 20070 0.0172
0.8032 20080 0.0176
0.8036 20090 0.0181
0.804 20100 0.0157
0.8044 20110 0.0176
0.8048 20120 0.0164
0.8052 20130 0.0176
0.8056 20140 0.0184
0.806 20150 0.0174
0.8064 20160 0.0175
0.8068 20170 0.0182
0.8072 20180 0.0177
0.8076 20190 0.0186
0.808 20200 0.0173
0.8084 20210 0.0177
0.8088 20220 0.0201
0.8092 20230 0.0177
0.8096 20240 0.0162
0.81 20250 0.0173
0.8104 20260 0.0177
0.8108 20270 0.0169
0.8112 20280 0.0176
0.8116 20290 0.0155
0.812 20300 0.0171
0.8124 20310 0.0181
0.8128 20320 0.0162
0.8132 20330 0.0191
0.8136 20340 0.016
0.814 20350 0.0171
0.8144 20360 0.0195
0.8148 20370 0.0164
0.8152 20380 0.0166
0.8156 20390 0.0205
0.816 20400 0.0171
0.8164 20410 0.0175
0.8168 20420 0.0185
0.8172 20430 0.0171
0.8176 20440 0.0144
0.818 20450 0.0165
0.8184 20460 0.018
0.8188 20470 0.0174
0.8192 20480 0.0182
0.8196 20490 0.0156
0.82 20500 0.0167
0.8204 20510 0.0187
0.8208 20520 0.0171
0.8212 20530 0.0166
0.8216 20540 0.0169
0.822 20550 0.0179
0.8224 20560 0.0158
0.8228 20570 0.0166
0.8232 20580 0.0172
0.8236 20590 0.0171
0.824 20600 0.0149
0.8244 20610 0.0156
0.8248 20620 0.018
0.8252 20630 0.0178
0.8256 20640 0.0139
0.826 20650 0.0167
0.8264 20660 0.0174
0.8268 20670 0.0184
0.8272 20680 0.0178
0.8276 20690 0.0161
0.828 20700 0.0165
0.8284 20710 0.0146
0.8288 20720 0.0181
0.8292 20730 0.0194
0.8296 20740 0.0153
0.83 20750 0.0159
0.8304 20760 0.0179
0.8308 20770 0.0145
0.8312 20780 0.0168
0.8316 20790 0.0184
0.832 20800 0.0159
0.8324 20810 0.0188
0.8328 20820 0.0148
0.8332 20830 0.0166
0.8336 20840 0.0176
0.834 20850 0.0162
0.8344 20860 0.0181
0.8348 20870 0.0166
0.8352 20880 0.0158
0.8356 20890 0.0176
0.836 20900 0.0195
0.8364 20910 0.0183
0.8368 20920 0.016
0.8372 20930 0.0175
0.8376 20940 0.0157
0.838 20950 0.0174
0.8384 20960 0.0167
0.8388 20970 0.0185
0.8392 20980 0.0182
0.8396 20990 0.0166
0.84 21000 0.0188
0.8404 21010 0.0166
0.8408 21020 0.0179
0.8412 21030 0.0183
0.8416 21040 0.0179
0.842 21050 0.0194
0.8424 21060 0.0164
0.8428 21070 0.0193
0.8432 21080 0.0184
0.8436 21090 0.0151
0.844 21100 0.0166
0.8444 21110 0.0149
0.8448 21120 0.0151
0.8452 21130 0.0163
0.8456 21140 0.0179
0.846 21150 0.017
0.8464 21160 0.0169
0.8468 21170 0.0161
0.8472 21180 0.018
0.8476 21190 0.0163
0.848 21200 0.0167
0.8484 21210 0.0186
0.8488 21220 0.0177
0.8492 21230 0.016
0.8496 21240 0.0176
0.85 21250 0.0162
0.8504 21260 0.0163
0.8508 21270 0.0162
0.8512 21280 0.0179
0.8516 21290 0.0184
0.852 21300 0.0172
0.8524 21310 0.0162
0.8528 21320 0.0158
0.8532 21330 0.015
0.8536 21340 0.0182
0.854 21350 0.0182
0.8544 21360 0.0176
0.8548 21370 0.0172
0.8552 21380 0.0177
0.8556 21390 0.0173
0.856 21400 0.0154
0.8564 21410 0.0182
0.8568 21420 0.0191
0.8572 21430 0.0189
0.8576 21440 0.0168
0.858 21450 0.0157
0.8584 21460 0.0154
0.8588 21470 0.0153
0.8592 21480 0.0154
0.8596 21490 0.0182
0.86 21500 0.0159
0.8604 21510 0.0161
0.8608 21520 0.017
0.8612 21530 0.0179
0.8616 21540 0.018
0.862 21550 0.0167
0.8624 21560 0.0188
0.8628 21570 0.0157
0.8632 21580 0.017
0.8636 21590 0.0178
0.864 21600 0.0168
0.8644 21610 0.0178
0.8648 21620 0.0154
0.8652 21630 0.0178
0.8656 21640 0.0167
0.866 21650 0.0196
0.8664 21660 0.0176
0.8668 21670 0.0176
0.8672 21680 0.0174
0.8676 21690 0.0169
0.868 21700 0.0159
0.8684 21710 0.0176
0.8688 21720 0.017
0.8692 21730 0.0168
0.8696 21740 0.0165
0.87 21750 0.0197
0.8704 21760 0.0163
0.8708 21770 0.0161
0.8712 21780 0.0169
0.8716 21790 0.0175
0.872 21800 0.0197
0.8724 21810 0.0191
0.8728 21820 0.0182
0.8732 21830 0.0189
0.8736 21840 0.0152
0.874 21850 0.0167
0.8744 21860 0.0157
0.8748 21870 0.0163
0.8752 21880 0.0151
0.8756 21890 0.0184
0.876 21900 0.0181
0.8764 21910 0.018
0.8768 21920 0.0173
0.8772 21930 0.0142
0.8776 21940 0.0171
0.878 21950 0.0174
0.8784 21960 0.0168
0.8788 21970 0.0173
0.8792 21980 0.0173
0.8796 21990 0.0182
0.88 22000 0.0162
0.8804 22010 0.0166
0.8808 22020 0.0174
0.8812 22030 0.0152
0.8816 22040 0.0182
0.882 22050 0.0177
0.8824 22060 0.0148
0.8828 22070 0.0167
0.8832 22080 0.0164
0.8836 22090 0.018
0.884 22100 0.018
0.8844 22110 0.0174
0.8848 22120 0.0179
0.8852 22130 0.0156
0.8856 22140 0.0186
0.886 22150 0.0189
0.8864 22160 0.0158
0.8868 22170 0.0164
0.8872 22180 0.0159
0.8876 22190 0.0162
0.888 22200 0.0151
0.8884 22210 0.0179
0.8888 22220 0.0183
0.8892 22230 0.016
0.8896 22240 0.0167
0.89 22250 0.018
0.8904 22260 0.0167
0.8908 22270 0.0189
0.8912 22280 0.0151
0.8916 22290 0.0183
0.892 22300 0.0164
0.8924 22310 0.0187
0.8928 22320 0.0154
0.8932 22330 0.0188
0.8936 22340 0.0153
0.894 22350 0.0166
0.8944 22360 0.0152
0.8948 22370 0.0165
0.8952 22380 0.0197
0.8956 22390 0.0165
0.896 22400 0.0173
0.8964 22410 0.0168
0.8968 22420 0.0162
0.8972 22430 0.018
0.8976 22440 0.0161
0.898 22450 0.0159
0.8984 22460 0.0162
0.8988 22470 0.0222
0.8992 22480 0.0162
0.8996 22490 0.0154
0.9 22500 0.0205
0.9004 22510 0.0173
0.9008 22520 0.0158
0.9012 22530 0.0158
0.9016 22540 0.0173
0.902 22550 0.0167
0.9024 22560 0.0152
0.9028 22570 0.017
0.9032 22580 0.0177
0.9036 22590 0.0153
0.904 22600 0.0163
0.9044 22610 0.0164
0.9048 22620 0.0157
0.9052 22630 0.0191
0.9056 22640 0.0152
0.906 22650 0.0176
0.9064 22660 0.017
0.9068 22670 0.0169
0.9072 22680 0.0158
0.9076 22690 0.0188
0.908 22700 0.015
0.9084 22710 0.0166
0.9088 22720 0.0173
0.9092 22730 0.0151
0.9096 22740 0.0179
0.91 22750 0.0163
0.9104 22760 0.0162
0.9108 22770 0.0162
0.9112 22780 0.0179
0.9116 22790 0.0186
0.912 22800 0.017
0.9124 22810 0.0153
0.9128 22820 0.0158
0.9132 22830 0.0184
0.9136 22840 0.0177
0.914 22850 0.0169
0.9144 22860 0.0183
0.9148 22870 0.0181
0.9152 22880 0.0179
0.9156 22890 0.0155
0.916 22900 0.0188
0.9164 22910 0.0163
0.9168 22920 0.0168
0.9172 22930 0.0181
0.9176 22940 0.0171
0.918 22950 0.0187
0.9184 22960 0.0157
0.9188 22970 0.0168
0.9192 22980 0.0189
0.9196 22990 0.0156
0.92 23000 0.0194
0.9204 23010 0.0154
0.9208 23020 0.0167
0.9212 23030 0.0145
0.9216 23040 0.0171
0.922 23050 0.0172
0.9224 23060 0.0183
0.9228 23070 0.0185
0.9232 23080 0.0168
0.9236 23090 0.0165
0.924 23100 0.0181
0.9244 23110 0.0174
0.9248 23120 0.0143
0.9252 23130 0.0187
0.9256 23140 0.0173
0.926 23150 0.019
0.9264 23160 0.0137
0.9268 23170 0.0167
0.9272 23180 0.0165
0.9276 23190 0.0181
0.928 23200 0.0155
0.9284 23210 0.0185
0.9288 23220 0.015
0.9292 23230 0.0169
0.9296 23240 0.0179
0.93 23250 0.0194
0.9304 23260 0.017
0.9308 23270 0.0176
0.9312 23280 0.0181
0.9316 23290 0.0169
0.932 23300 0.0161
0.9324 23310 0.0177
0.9328 23320 0.0151
0.9332 23330 0.0153
0.9336 23340 0.0157
0.934 23350 0.0172
0.9344 23360 0.0139
0.9348 23370 0.019
0.9352 23380 0.0181
0.9356 23390 0.016
0.936 23400 0.0185
0.9364 23410 0.0174
0.9368 23420 0.02
0.9372 23430 0.0157
0.9376 23440 0.02
0.938 23450 0.0154
0.9384 23460 0.0159
0.9388 23470 0.0177
0.9392 23480 0.0157
0.9396 23490 0.0172
0.94 23500 0.0182
0.9404 23510 0.014
0.9408 23520 0.0179
0.9412 23530 0.0177
0.9416 23540 0.0163
0.942 23550 0.0171
0.9424 23560 0.0178
0.9428 23570 0.0155
0.9432 23580 0.0177
0.9436 23590 0.0168
0.944 23600 0.0201
0.9444 23610 0.0167
0.9448 23620 0.017
0.9452 23630 0.0162
0.9456 23640 0.0167
0.946 23650 0.0193
0.9464 23660 0.016
0.9468 23670 0.0171
0.9472 23680 0.0157
0.9476 23690 0.0156
0.948 23700 0.0187
0.9484 23710 0.0164
0.9488 23720 0.0181
0.9492 23730 0.0178
0.9496 23740 0.017
0.95 23750 0.0185
0.9504 23760 0.0158
0.9508 23770 0.0174
0.9512 23780 0.015
0.9516 23790 0.0159
0.952 23800 0.016
0.9524 23810 0.0148
0.9528 23820 0.0174
0.9532 23830 0.0163
0.9536 23840 0.016
0.954 23850 0.0173
0.9544 23860 0.0194
0.9548 23870 0.0167
0.9552 23880 0.017
0.9556 23890 0.0172
0.956 23900 0.0155
0.9564 23910 0.0176
0.9568 23920 0.0177
0.9572 23930 0.0182
0.9576 23940 0.0169
0.958 23950 0.0189
0.9584 23960 0.0164
0.9588 23970 0.0166
0.9592 23980 0.0178
0.9596 23990 0.0191
0.96 24000 0.0149
0.9604 24010 0.0177
0.9608 24020 0.0169
0.9612 24030 0.0151
0.9616 24040 0.0168
0.962 24050 0.0146
0.9624 24060 0.015
0.9628 24070 0.0222
0.9632 24080 0.0169
0.9636 24090 0.0164
0.964 24100 0.0171
0.9644 24110 0.0179
0.9648 24120 0.0173
0.9652 24130 0.0154
0.9656 24140 0.0178
0.966 24150 0.018
0.9664 24160 0.0182
0.9668 24170 0.0194
0.9672 24180 0.0189
0.9676 24190 0.0174
0.968 24200 0.019
0.9684 24210 0.0157
0.9688 24220 0.0178
0.9692 24230 0.0155
0.9696 24240 0.0157
0.97 24250 0.0188
0.9704 24260 0.0167
0.9708 24270 0.0169
0.9712 24280 0.0172
0.9716 24290 0.0159
0.972 24300 0.0175
0.9724 24310 0.0159
0.9728 24320 0.0205
0.9732 24330 0.018
0.9736 24340 0.0187
0.974 24350 0.0164
0.9744 24360 0.0158
0.9748 24370 0.0186
0.9752 24380 0.0172
0.9756 24390 0.0161
0.976 24400 0.0191
0.9764 24410 0.0176
0.9768 24420 0.0163
0.9772 24430 0.0204
0.9776 24440 0.0178
0.978 24450 0.0176
0.9784 24460 0.0168
0.9788 24470 0.0163
0.9792 24480 0.0151
0.9796 24490 0.0178
0.98 24500 0.0167
0.9804 24510 0.0152
0.9808 24520 0.0175
0.9812 24530 0.0177
0.9816 24540 0.0146
0.982 24550 0.0176
0.9824 24560 0.0179
0.9828 24570 0.0175
0.9832 24580 0.0161
0.9836 24590 0.0172
0.984 24600 0.0171
0.9844 24610 0.0192
0.9848 24620 0.0183
0.9852 24630 0.0133
0.9856 24640 0.0176
0.986 24650 0.0155
0.9864 24660 0.019
0.9868 24670 0.0164
0.9872 24680 0.0169
0.9876 24690 0.0159
0.988 24700 0.0147
0.9884 24710 0.0191
0.9888 24720 0.0159
0.9892 24730 0.0182
0.9896 24740 0.0165
0.99 24750 0.0172
0.9904 24760 0.0189
0.9908 24770 0.0156
0.9912 24780 0.0176
0.9916 24790 0.0169
0.992 24800 0.0176
0.9924 24810 0.0178
0.9928 24820 0.0184
0.9932 24830 0.0173
0.9936 24840 0.0175
0.994 24850 0.0154
0.9944 24860 0.0155
0.9948 24870 0.0177
0.9952 24880 0.0189
0.9956 24890 0.0154
0.996 24900 0.018
0.9964 24910 0.0165
0.9968 24920 0.019
0.9972 24930 0.0168
0.9976 24940 0.0157
0.998 24950 0.014
0.9984 24960 0.018
0.9988 24970 0.0157
0.9992 24980 0.0165
0.9996 24990 0.0176
1.0 25000 0.0176

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 4.0.2
  • PyLate: 1.2.0
  • Transformers: 4.48.2
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.3.1
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
-
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for iambestfeed/halong_colbert

Finetuned
(21)
this model

Dataset used to train iambestfeed/halong_colbert