bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0614
- Precision: 0.9619
- Recall: 0.9666
- F1: 0.9643
- Accuracy: 0.9962
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0772 | 1.0 | 1756 | 0.0635 | 0.9518 | 0.9564 | 0.9541 | 0.9951 |
| 0.0341 | 2.0 | 3512 | 0.0656 | 0.9621 | 0.9649 | 0.9635 | 0.9961 |
| 0.024 | 3.0 | 5268 | 0.0614 | 0.9619 | 0.9666 | 0.9643 | 0.9962 |
Framework versions
- Transformers 4.53.0
- Pytorch 2.7.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.2
- Downloads last month
- 8
Model tree for iamnamas/bert-finetuned-ner
Base model
google-bert/bert-base-casedDataset used to train iamnamas/bert-finetuned-ner
Evaluation results
- Precision on conll2003validation set self-reported0.962
- Recall on conll2003validation set self-reported0.967
- F1 on conll2003validation set self-reported0.964
- Accuracy on conll2003validation set self-reported0.996