VQ-VAE for Tiny ImageNet (ImageNet-200)

This repository contains a Vector Quantized Variational Autoencoder (VQ-VAE) trained on the Tiny ImageNet-200 dataset using PyTorch. It is part of an image augmentation and representation learning pipeline for generative modeling and unsupervised learning tasks.


🧠 Model Details

  • Model Type: Vector Quantized Variational Autoencoder (VQ-VAE)
  • Dataset: Tiny ImageNet (ImageNet-200)
  • Epochs: 35
  • Latent Space: Discrete codebook (vector quantization)
  • Input Size: 64Γ—64 RGB
  • Loss Function: Mean Squared Error (MSE) + VQ commitment loss
  • Final Training Loss: ~0.0292
  • FID Score: ~102.87
  • Architecture: 3-layer CNN Encoder & Decoder with quantization bottleneck

πŸ“¦ Files

  • generator.pt β€” Trained VQ-VAE model weights
  • loss_curve.png β€” Plot of training loss across 35 epochs
  • fid_score.json β€” FID evaluation result on 1000 generated samples
  • fid_real/ β€” 1000 real Tiny ImageNet samples used for FID
  • fid_fake/ β€” 1000 VQ-VAE reconstructions used for FID

πŸ”§ Usage

import torch
from models.vqvae.model import VQVAE

model = VQVAE()
model.load_state_dict(torch.load("generator.pt", map_location="cpu"))
model.eval()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Evaluation results