Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- vqvae
|
5 |
+
- image-generation
|
6 |
+
- unsupervised-learning
|
7 |
+
- pytorch
|
8 |
+
- imagenet
|
9 |
+
- generative-model
|
10 |
+
datasets:
|
11 |
+
- imagenet-200
|
12 |
+
library_name: pytorch
|
13 |
+
model-index:
|
14 |
+
- name: VQ-VAE-ImageNet200
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: image-generation
|
18 |
+
name: Image Generation
|
19 |
+
dataset:
|
20 |
+
name: Tiny ImageNet (ImageNet-200)
|
21 |
+
type: image-classification
|
22 |
+
metrics:
|
23 |
+
- name: FID
|
24 |
+
type: frechet-inception-distance
|
25 |
+
value: 102.87
|
26 |
+
---
|
27 |
+
|
28 |
+
# VQ-VAE for Tiny ImageNet (ImageNet-200)
|
29 |
+
|
30 |
+
This repository contains a **Vector Quantized Variational Autoencoder (VQ-VAE)** trained on the Tiny ImageNet-200 dataset using PyTorch. It is part of an image augmentation and representation learning pipeline for generative modeling and unsupervised learning tasks.
|
31 |
+
|
32 |
+
---
|
33 |
+
|
34 |
+
## 🧠Model Details
|
35 |
+
|
36 |
+
- **Model Type**: Vector Quantized Variational Autoencoder (VQ-VAE)
|
37 |
+
- **Dataset**: Tiny ImageNet (ImageNet-200)
|
38 |
+
- **Epochs**: 35
|
39 |
+
- **Latent Space**: Discrete codebook (vector quantization)
|
40 |
+
- **Input Size**: 64×64 RGB
|
41 |
+
- **Loss Function**: Mean Squared Error (MSE) + VQ commitment loss
|
42 |
+
- **Final Training Loss**: ~0.0292
|
43 |
+
- **FID Score**: ~102.87
|
44 |
+
- **Architecture**: 3-layer CNN Encoder & Decoder with quantization bottleneck
|
45 |
+
|
46 |
+
---
|
47 |
+
|
48 |
+
## 📦 Files
|
49 |
+
|
50 |
+
- `generator.pt` — Trained VQ-VAE model weights
|
51 |
+
- `loss_curve.png` — Plot of training loss across 35 epochs
|
52 |
+
- `fid_score.json` — FID evaluation result on 1000 generated samples
|
53 |
+
- `fid_real/` — 1000 real Tiny ImageNet samples used for FID
|
54 |
+
- `fid_fake/` — 1000 VQ-VAE reconstructions used for FID
|
55 |
+
|
56 |
+
---
|
57 |
+
|
58 |
+
## 🔧 Usage
|
59 |
+
|
60 |
+
```python
|
61 |
+
import torch
|
62 |
+
from models.vqvae.model import VQVAE
|
63 |
+
|
64 |
+
model = VQVAE()
|
65 |
+
model.load_state_dict(torch.load("generator.pt", map_location="cpu"))
|
66 |
+
model.eval()
|