ianisdev commited on
Commit
066bef2
·
verified ·
1 Parent(s): 7d1add9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - vqvae
5
+ - image-generation
6
+ - unsupervised-learning
7
+ - pytorch
8
+ - imagenet
9
+ - generative-model
10
+ datasets:
11
+ - imagenet-200
12
+ library_name: pytorch
13
+ model-index:
14
+ - name: VQ-VAE-ImageNet200
15
+ results:
16
+ - task:
17
+ type: image-generation
18
+ name: Image Generation
19
+ dataset:
20
+ name: Tiny ImageNet (ImageNet-200)
21
+ type: image-classification
22
+ metrics:
23
+ - name: FID
24
+ type: frechet-inception-distance
25
+ value: 102.87
26
+ ---
27
+
28
+ # VQ-VAE for Tiny ImageNet (ImageNet-200)
29
+
30
+ This repository contains a **Vector Quantized Variational Autoencoder (VQ-VAE)** trained on the Tiny ImageNet-200 dataset using PyTorch. It is part of an image augmentation and representation learning pipeline for generative modeling and unsupervised learning tasks.
31
+
32
+ ---
33
+
34
+ ## 🧠 Model Details
35
+
36
+ - **Model Type**: Vector Quantized Variational Autoencoder (VQ-VAE)
37
+ - **Dataset**: Tiny ImageNet (ImageNet-200)
38
+ - **Epochs**: 35
39
+ - **Latent Space**: Discrete codebook (vector quantization)
40
+ - **Input Size**: 64×64 RGB
41
+ - **Loss Function**: Mean Squared Error (MSE) + VQ commitment loss
42
+ - **Final Training Loss**: ~0.0292
43
+ - **FID Score**: ~102.87
44
+ - **Architecture**: 3-layer CNN Encoder & Decoder with quantization bottleneck
45
+
46
+ ---
47
+
48
+ ## 📦 Files
49
+
50
+ - `generator.pt` — Trained VQ-VAE model weights
51
+ - `loss_curve.png` — Plot of training loss across 35 epochs
52
+ - `fid_score.json` — FID evaluation result on 1000 generated samples
53
+ - `fid_real/` — 1000 real Tiny ImageNet samples used for FID
54
+ - `fid_fake/` — 1000 VQ-VAE reconstructions used for FID
55
+
56
+ ---
57
+
58
+ ## 🔧 Usage
59
+
60
+ ```python
61
+ import torch
62
+ from models.vqvae.model import VQVAE
63
+
64
+ model = VQVAE()
65
+ model.load_state_dict(torch.load("generator.pt", map_location="cpu"))
66
+ model.eval()