new weights
#7
by
Adirazgold
- opened
- .gitattributes +0 -1
- README.md +47 -66
- REPORT_Benchmarking the AI advantage in finance.pdf +0 -3
- granite_vision_embedding_config.py → colgranitevision_config.py +2 -4
- config.json +11 -11
- modeling_granite_vision_embedding.py → modeling_colgranitevision.py +9 -6
- preprocessor_config.json +1 -1
- processing_granite_vision_embedding.py → processing_colgranitevision.py +18 -15
- processor_config.json +2 -2
.gitattributes
CHANGED
|
@@ -33,4 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
-
REPORT_Benchmarking[[:space:]]the[[:space:]]AI[[:space:]]advantage[[:space:]]in[[:space:]]finance.pdf filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
README.md
CHANGED
|
@@ -3,70 +3,62 @@ license: apache-2.0
|
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
base_model:
|
| 6 |
-
- ibm-granite/granite-vision-3.3-2b
|
| 7 |
library_name: transformers
|
| 8 |
---
|
| 9 |
-
# granite-vision-3.3-2b
|
| 10 |
**Model Summary:**
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
**Evaluations:**
|
| 15 |
-
We evaluated granite-vision-3.3-2b
|
| 16 |
|
| 17 |
## **NDCG@5 - ViDoRe V2**
|
| 18 |
-
| Collection \ Model | ColPali-v1.3 | ColQwen2.5-v0.2 | ColNomic-3b |
|
| 19 |
-
|
| 20 |
-
| ESG Restaurant Human | 51.
|
| 21 |
-
| Economics Macro Multilingual | 49.
|
| 22 |
-
| MIT Biomedical | 59.
|
| 23 |
-
| ESG Restaurant Synthetic | 57.
|
| 24 |
-
| ESG Restaurant Synthetic Multilingual | 55.
|
| 25 |
-
| MIT Biomedical Multilingual | 56.
|
| 26 |
-
| Economics Macro | 51.
|
| 27 |
-
| **Avg (ViDoRe2)** | **54.
|
| 28 |
|
| 29 |
## **NDCG@5 - REAL-MM-RAG**
|
| 30 |
-
| Collection \ Model | ColPali-v1.3 | ColQwen2.5-v0.2 | ColNomic-3b |
|
| 31 |
-
|----------------------------------------|--------------|------------------|-------------|--------------------------|
|
| 32 |
-
| FinReport | 55 | 66 | 78 |
|
| 33 |
-
| FinSlides | 68
|
| 34 |
-
| TechReport | 78 | 86 | 88 |
|
| 35 |
-
| TechSlides | 90 | 93 | 92 |
|
| 36 |
-
| **Avg (REAL-MM-RAG)** | **73** | **81** | **85** |
|
| 37 |
-
|
| 38 |
-
- **Release Date**: June
|
| 39 |
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
**Intended Use:**
|
| 43 |
The model is intended to be used in enterprise applications that involve retrieval of visual and text data. In particular, the model is well-suited for multi-modal RAG systems where the knowledge base is composed of complex enterprise documents, such as reports, slides, images, canned doscuments, manuals and more. The model can be used as a standalone retriever, or alongside a text-based retriever.
|
| 44 |
-
|
| 45 |
### Usage
|
|
|
|
| 46 |
```shell
|
| 47 |
pip install -q torch torchvision torchaudio
|
| 48 |
-
pip install transformers
|
| 49 |
```
|
| 50 |
Then run the code:
|
| 51 |
```python
|
| 52 |
-
from io import BytesIO
|
| 53 |
-
|
| 54 |
-
import requests
|
| 55 |
-
import torch
|
| 56 |
-
from PIL import Image
|
| 57 |
from transformers import AutoProcessor, AutoModel
|
| 58 |
-
from
|
|
|
|
| 59 |
|
| 60 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 61 |
-
model_name = "ibm-granite/granite-vision-3.3-2b
|
| 62 |
-
model = AutoModel.from_pretrained(
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
torch_dtype=torch.float16,
|
| 66 |
-
device_map=device,
|
| 67 |
-
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None
|
| 68 |
-
).eval()
|
| 69 |
-
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
| 70 |
|
| 71 |
# ─────────────────────────────────────────────
|
| 72 |
# Inputs: Image + Text
|
|
@@ -106,35 +98,24 @@ similarity = processor.score(txt_emb, img_emb, batch_size=1, device=device)
|
|
| 106 |
print("\n" + "=" * 50)
|
| 107 |
print(f"📊 Similarity between image and text: {similarity.item():.4f}")
|
| 108 |
print("=" * 50)
|
|
|
|
| 109 |
```
|
| 110 |
### Use granite-vision-embedding-3.3-2b for MM RAG
|
| 111 |
-
For an example of MM
|
| 112 |
|
| 113 |
**Model Architecture:**
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
(1) Vision-Language model : granite-vision-3.3-2b (https://huggingface.co/ibm-granite/granite-vision-3.3-2b).
|
| 117 |
-
|
| 118 |
-
(2) Projection layer: linear layer that projects the hidden layer dimension of Vision-Language model to 128 and outputs 729 embedding vectors per image.
|
| 119 |
-
|
| 120 |
-
The scoring is computed using MaxSim-based late interaction mechanism.
|
| 121 |
-
|
| 122 |
**Training Data:**
|
| 123 |
-
|
| 124 |
documents sourced from Common Crawl, Wikipedia, and ESG (Environmental, Social, and Governance)
|
| 125 |
-
reports.
|
| 126 |
-
|
| 127 |
**Infrastructure:**
|
| 128 |
-
We train granite-vision-3.3-2b
|
| 129 |
-
|
| 130 |
**Ethical Considerations and Limitations:**
|
| 131 |
-
The use of Large Vision and Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making.
|
| 132 |
-
Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use granite-vision-
|
| 133 |
-
|
| 134 |
**Resources**
|
| 135 |
-
-
|
| 136 |
-
-
|
| 137 |
-
-
|
| 138 |
-
-
|
| 139 |
-
- 🚀 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
|
| 140 |
-
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
|
|
|
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
base_model:
|
| 6 |
+
- ibm-granite/granite-vision-3.3-2b-preview
|
| 7 |
library_name: transformers
|
| 8 |
---
|
| 9 |
+
# granite-vision-embedding-3.3-2b
|
| 10 |
**Model Summary:**
|
| 11 |
+
granite-vision-embedding-3.3-2b is an efficient embedding model, based on granite-vision Vision Language Model(VLM). This model is specifically designed for multi-modal document retrieval, enabling queries on documents with tables, charts, infographics, and complex layout. The model generates ColBERT-style multi-vector representations of pages.
|
| 12 |
+
The model eliminates the need for OCR-based text extraction and related preprocessing steps.
|
| 13 |
+
|
| 14 |
|
| 15 |
**Evaluations:**
|
| 16 |
+
We evaluated granite-vision-embedding-3.3-2b alongside other top colBERT style multi-modal embedding models in the 1B-3B parameter range using two benchmark: Vidore2 and [Real-MM-RAG-Bench](https://arxiv.org/abs/2502.12342) which are specifically addressing complex multi-modal documents retrieval task.
|
| 17 |
|
| 18 |
## **NDCG@5 - ViDoRe V2**
|
| 19 |
+
| Collection \ Model | ColPali-v1.3 | ColQwen2.5-v0.2 | ColNomic-3b | ColGraniteVision-3.3-2b |
|
| 20 |
+
|----------------------------------------|--------------|------------------|-------------|--------------------------|
|
| 21 |
+
| ESG Restaurant Human | 51.10 | 68.40 | 65.80 | 60.00 |
|
| 22 |
+
| Economics Macro Multilingual | 49.90 | 56.50 | 55.40 | 50.13 |
|
| 23 |
+
| MIT Biomedical | 59.70 | 63.60 | 63.50 | 60.00 |
|
| 24 |
+
| ESG Restaurant Synthetic | 57.00 | 57.40 | 56.60 | 54.00 |
|
| 25 |
+
| ESG Restaurant Synthetic Multilingual | 55.70 | 57.40 | 57.20 | 52.00 |
|
| 26 |
+
| MIT Biomedical Multilingual | 56.50 | 61.10 | 62.50 | 54.00 |
|
| 27 |
+
| Economics Macro | 51.60 | 59.80 | 60.20 | 57.00 |
|
| 28 |
+
| **Avg (ViDoRe2)** | **54.50** | **60.60** | **60.17** | **55.20** |
|
| 29 |
|
| 30 |
## **NDCG@5 - REAL-MM-RAG**
|
| 31 |
+
| Collection \ Model | ColPali-v1.3 | ColQwen2.5-v0.2 | ColNomic-3b | ColGraniteVision-3.3-2b |
|
| 32 |
+
|----------------------------------------|--------------|------------------|-------------|--------------------------|
|
| 33 |
+
| FinReport | 0.55 | 0.66 | 0.78 | 0.60 |
|
| 34 |
+
| FinSlides | 0.68 | 0.79 | 0.81 | 0.72 |
|
| 35 |
+
| TechReport | 0.78 | 0.86 | 0.88 | 0.80 |
|
| 36 |
+
| TechSlides | 0.90 | 0.93 | 0.92 | 0.92 |
|
| 37 |
+
| **Avg (REAL-MM-RAG)** | **0.73** | **0.81** | **0.85** | **0.79** |
|
| 38 |
+
|
| 39 |
+
- **Release Date**: June 2025
|
| 40 |
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
| 41 |
+
**Supported Input Format:**
|
| 42 |
+
Currently the model supports English queries and images (png, jpeg, etc.) as input format.
|
| 43 |
**Intended Use:**
|
| 44 |
The model is intended to be used in enterprise applications that involve retrieval of visual and text data. In particular, the model is well-suited for multi-modal RAG systems where the knowledge base is composed of complex enterprise documents, such as reports, slides, images, canned doscuments, manuals and more. The model can be used as a standalone retriever, or alongside a text-based retriever.
|
|
|
|
| 45 |
### Usage
|
| 46 |
+
First, make sure to build the latest verions of transormers:
|
| 47 |
```shell
|
| 48 |
pip install -q torch torchvision torchaudio
|
| 49 |
+
pip install transformers>=4.49
|
| 50 |
```
|
| 51 |
Then run the code:
|
| 52 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
from transformers import AutoProcessor, AutoModel
|
| 54 |
+
from PIL import Image
|
| 55 |
+
import torch
|
| 56 |
|
| 57 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 58 |
+
model_name = "ibm-granite/granite-vision-embedding-3.3-2b"
|
| 59 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True,torch_dtype=torch.float16).to(device).eval()
|
| 60 |
+
processor = AutoProcessor.from_pretrained(model_name,trust_remote_code=True)
|
| 61 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# ─────────────────────────────────────────────
|
| 64 |
# Inputs: Image + Text
|
|
|
|
| 98 |
print("\n" + "=" * 50)
|
| 99 |
print(f"📊 Similarity between image and text: {similarity.item():.4f}")
|
| 100 |
print("=" * 50)
|
| 101 |
+
|
| 102 |
```
|
| 103 |
### Use granite-vision-embedding-3.3-2b for MM RAG
|
| 104 |
+
For an example of MM RAG using col-granite-visionrefer to [this notebook](......).
|
| 105 |
|
| 106 |
**Model Architecture:**
|
| 107 |
+
We built our model upon [granite-vision-3.3-2b](https://huggingface.co/ibm-granite/granite-vision-3.3-2b) with additional projection layer.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
**Training Data:**
|
| 109 |
+
The model was trained on a random subset from DOCFM. DOCFM is a large-scale comprehensive dataset effort at IBM consisting of 85 million document pages extracted from unique PDF
|
| 110 |
documents sourced from Common Crawl, Wikipedia, and ESG (Environmental, Social, and Governance)
|
| 111 |
+
reports. For each image in the dataset, Pseudo-questions were generated using Pixtral12B VLM.
|
|
|
|
| 112 |
**Infrastructure:**
|
| 113 |
+
We train granite-vision-embedding-3.3-2b on IBM’s cognitive computing cluster, which is outfitted with NVIDIA A100 GPUs.
|
|
|
|
| 114 |
**Ethical Considerations and Limitations:**
|
| 115 |
+
The use of Large Vision and Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making. col-granite-vision-1.0-2b is not the exception in this regard. Although our alignment processes include safety considerations, the model may in some cases produce inaccurate or biased responses.
|
| 116 |
+
Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use col-granite-vision-1.0-2b with ethical intentions and in a responsible way.
|
|
|
|
| 117 |
**Resources**
|
| 118 |
+
- :page_facing_up: Granite Vision technical report [here](https://arxiv.org/abs/2502.09927)
|
| 119 |
+
- :star:️ Learn about the latest updates with Granite: https://www.ibm.com/granite
|
| 120 |
+
- :rocket: Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
|
| 121 |
+
- :bulb: Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
|
|
|
|
|
|
REPORT_Benchmarking the AI advantage in finance.pdf
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:4e6da951c55eef3fd52aa41543f3b4377ab26e2758c579aec2d11068a66b3d20
|
| 3 |
-
size 1746880
|
|
|
|
|
|
|
|
|
|
|
|
granite_vision_embedding_config.py → colgranitevision_config.py
RENAMED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
from transformers import LlavaNextConfig
|
| 2 |
|
| 3 |
|
| 4 |
-
class
|
| 5 |
-
model_type = "
|
| 6 |
|
| 7 |
def __init__(self, **kwargs):
|
| 8 |
self.base_model = kwargs.get("base_model", None)
|
|
@@ -11,5 +11,3 @@ class GraniteVisionEmbConfig(LlavaNextConfig):
|
|
| 11 |
self.base_image_feature_location = kwargs.get("base_image_feature_location", "last")
|
| 12 |
self.adapter_path = kwargs.get("adapter_path", None)
|
| 13 |
super().__init__(**kwargs)
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 1 |
from transformers import LlavaNextConfig
|
| 2 |
|
| 3 |
|
| 4 |
+
class ColGraniteVisionConfig(LlavaNextConfig):
|
| 5 |
+
model_type = "colgranitevision"
|
| 6 |
|
| 7 |
def __init__(self, **kwargs):
|
| 8 |
self.base_model = kwargs.get("base_model", None)
|
|
|
|
| 11 |
self.base_image_feature_location = kwargs.get("base_image_feature_location", "last")
|
| 12 |
self.adapter_path = kwargs.get("adapter_path", None)
|
| 13 |
super().__init__(**kwargs)
|
|
|
|
|
|
config.json
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "
|
| 3 |
"adapter_path": null,
|
| 4 |
-
|
| 5 |
-
"AutoModel": "
|
| 6 |
-
"AutoProcessor": "
|
| 7 |
-
"AutoConfig": "
|
| 8 |
},
|
| 9 |
"architectures": [
|
| 10 |
-
"
|
| 11 |
],
|
| 12 |
-
"base_image_feature_location": "last",
|
| 13 |
"base_model": null,
|
| 14 |
"emb_dim_doc": 128,
|
| 15 |
"emb_dim_query": 128,
|
|
|
|
| 16 |
"image_grid_pinpoints": [
|
| 17 |
[
|
| 18 |
384,
|
|
@@ -121,7 +121,7 @@
|
|
| 121 |
],
|
| 122 |
"image_seq_length": 576,
|
| 123 |
"image_token_index": 49155,
|
| 124 |
-
"model_type": "
|
| 125 |
"multimodal_projector_bias": true,
|
| 126 |
"pretrained_language_model": "",
|
| 127 |
"pretrained_vision_tower": "",
|
|
@@ -149,12 +149,12 @@
|
|
| 149 |
"rms_norm_eps": 1e-05,
|
| 150 |
"rope_theta": 300000,
|
| 151 |
"tie_word_embeddings": true,
|
| 152 |
-
"torch_dtype": "
|
| 153 |
"vocab_size": 49156
|
| 154 |
},
|
| 155 |
"tie_word_embeddings": true,
|
| 156 |
"torch_dtype": "float32",
|
| 157 |
-
"transformers_version": "4.
|
| 158 |
"use_image_newline_parameter": true,
|
| 159 |
"vision_config": {
|
| 160 |
"_attn_implementation_autoset": true,
|
|
@@ -167,7 +167,7 @@
|
|
| 167 |
"num_attention_heads": 16,
|
| 168 |
"num_hidden_layers": 27,
|
| 169 |
"patch_size": 14,
|
| 170 |
-
"torch_dtype": "
|
| 171 |
},
|
| 172 |
"vision_feature_layer": [
|
| 173 |
-24,
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "ibm-granite/granite-vision-3.3-2b",
|
| 3 |
"adapter_path": null,
|
| 4 |
+
"auto_map": {
|
| 5 |
+
"AutoModel": "modeling_colgranitevision.ColGraniteVision",
|
| 6 |
+
"AutoProcessor": "processing_colgranitevision.ColGraniteVisionProcessor",
|
| 7 |
+
"AutoConfig": "colgranitevision_config.ColGraniteVisionConfig"
|
| 8 |
},
|
| 9 |
"architectures": [
|
| 10 |
+
"ColGraniteVision"
|
| 11 |
],
|
|
|
|
| 12 |
"base_model": null,
|
| 13 |
"emb_dim_doc": 128,
|
| 14 |
"emb_dim_query": 128,
|
| 15 |
+
"base_image_feature_location": "last",
|
| 16 |
"image_grid_pinpoints": [
|
| 17 |
[
|
| 18 |
384,
|
|
|
|
| 121 |
],
|
| 122 |
"image_seq_length": 576,
|
| 123 |
"image_token_index": 49155,
|
| 124 |
+
"model_type": "colgranitevision",
|
| 125 |
"multimodal_projector_bias": true,
|
| 126 |
"pretrained_language_model": "",
|
| 127 |
"pretrained_vision_tower": "",
|
|
|
|
| 149 |
"rms_norm_eps": 1e-05,
|
| 150 |
"rope_theta": 300000,
|
| 151 |
"tie_word_embeddings": true,
|
| 152 |
+
"torch_dtype": "float32",
|
| 153 |
"vocab_size": 49156
|
| 154 |
},
|
| 155 |
"tie_word_embeddings": true,
|
| 156 |
"torch_dtype": "float32",
|
| 157 |
+
"transformers_version": "4.50.0.dev0",
|
| 158 |
"use_image_newline_parameter": true,
|
| 159 |
"vision_config": {
|
| 160 |
"_attn_implementation_autoset": true,
|
|
|
|
| 167 |
"num_attention_heads": 16,
|
| 168 |
"num_hidden_layers": 27,
|
| 169 |
"patch_size": 14,
|
| 170 |
+
"torch_dtype": "float32"
|
| 171 |
},
|
| 172 |
"vision_feature_layer": [
|
| 173 |
-24,
|
modeling_granite_vision_embedding.py → modeling_colgranitevision.py
RENAMED
|
@@ -7,10 +7,11 @@ from transformers import LlavaNextPreTrainedModel
|
|
| 7 |
from transformers.models.llava_next.modeling_llava_next import LlavaNextForConditionalGeneration
|
| 8 |
from transformers.models.llava_next.modeling_llava_next import unpad_image, get_anyres_image_grid_shape
|
| 9 |
|
| 10 |
-
from .
|
| 11 |
|
| 12 |
-
class LlavaNextWithCustomPacking(LlavaNextForConditionalGeneration):
|
| 13 |
|
|
|
|
|
|
|
| 14 |
def pack_image_features(
|
| 15 |
self,
|
| 16 |
image_features,
|
|
@@ -92,15 +93,15 @@ class LlavaNextWithCustomPacking(LlavaNextForConditionalGeneration):
|
|
| 92 |
return image_features, feature_lens
|
| 93 |
|
| 94 |
|
| 95 |
-
class
|
| 96 |
"""
|
| 97 |
-
|
| 98 |
"""
|
| 99 |
|
| 100 |
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
| 101 |
-
config_class =
|
| 102 |
|
| 103 |
-
def __init__(self, config:
|
| 104 |
super().__init__(config=config)
|
| 105 |
|
| 106 |
model = LlavaNextWithCustomPacking(config=config)
|
|
@@ -108,6 +109,8 @@ class GraniteVisionEmb(LlavaNextPreTrainedModel):
|
|
| 108 |
self._tied_weights_keys = [f"model.language_model.{k}" for k in model.language_model._tied_weights_keys]
|
| 109 |
self.model = model
|
| 110 |
|
|
|
|
|
|
|
| 111 |
self.dim = 128
|
| 112 |
self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim)
|
| 113 |
|
|
|
|
| 7 |
from transformers.models.llava_next.modeling_llava_next import LlavaNextForConditionalGeneration
|
| 8 |
from transformers.models.llava_next.modeling_llava_next import unpad_image, get_anyres_image_grid_shape
|
| 9 |
|
| 10 |
+
from .colgranitevision_config import ColGraniteVisionConfig
|
| 11 |
|
|
|
|
| 12 |
|
| 13 |
+
class LlavaNextWithCustomPacking(LlavaNextForConditionalGeneration):
|
| 14 |
+
|
| 15 |
def pack_image_features(
|
| 16 |
self,
|
| 17 |
image_features,
|
|
|
|
| 93 |
return image_features, feature_lens
|
| 94 |
|
| 95 |
|
| 96 |
+
class ColGraniteVision(LlavaNextPreTrainedModel):
|
| 97 |
"""
|
| 98 |
+
ColGraniteVision model implementation.
|
| 99 |
"""
|
| 100 |
|
| 101 |
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
| 102 |
+
config_class = ColGraniteVisionConfig
|
| 103 |
|
| 104 |
+
def __init__(self, config: ColGraniteVisionConfig):
|
| 105 |
super().__init__(config=config)
|
| 106 |
|
| 107 |
model = LlavaNextWithCustomPacking(config=config)
|
|
|
|
| 109 |
self._tied_weights_keys = [f"model.language_model.{k}" for k in model.language_model._tied_weights_keys]
|
| 110 |
self.model = model
|
| 111 |
|
| 112 |
+
# TODO: Wait for ColPali2 to create a ColPaliConfig to allow specifying the embedding dimension.
|
| 113 |
+
# We could do it now but it would break all the models trying to load the model from the checkpoint.
|
| 114 |
self.dim = 128
|
| 115 |
self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim)
|
| 116 |
|
preprocessor_config.json
CHANGED
|
@@ -127,7 +127,7 @@
|
|
| 127 |
0.5,
|
| 128 |
0.5
|
| 129 |
],
|
| 130 |
-
"processor_class": "
|
| 131 |
"resample": 3,
|
| 132 |
"rescale_factor": 0.00392156862745098,
|
| 133 |
"size": {
|
|
|
|
| 127 |
0.5,
|
| 128 |
0.5
|
| 129 |
],
|
| 130 |
+
"processor_class": "ColGraniteVisionProcessor",
|
| 131 |
"resample": 3,
|
| 132 |
"rescale_factor": 0.00392156862745098,
|
| 133 |
"size": {
|
processing_granite_vision_embedding.py → processing_colgranitevision.py
RENAMED
|
@@ -21,9 +21,9 @@ def floor_by_factor(number: float, factor: int) -> int:
|
|
| 21 |
return math.floor(number / factor) * factor
|
| 22 |
|
| 23 |
|
| 24 |
-
class
|
| 25 |
"""
|
| 26 |
-
Processor for
|
| 27 |
"""
|
| 28 |
|
| 29 |
visual_prompt_prefix: ClassVar[str] = "<|user|>\n<image>\nDescribe the image.\n"
|
|
@@ -140,14 +140,14 @@ class GraniteVisionEmbProcessor(LlavaNextProcessor):
|
|
| 140 |
max_size=self.max_size,
|
| 141 |
fill_color=0
|
| 142 |
)
|
| 143 |
-
|
| 144 |
def resize_and_pad_centered_to_long_side(
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
) -> Image.Image:
|
| 152 |
"""
|
| 153 |
Resizes and pads an image such that:
|
|
@@ -183,10 +183,10 @@ class GraniteVisionEmbProcessor(LlavaNextProcessor):
|
|
| 183 |
|
| 184 |
# Resize the image
|
| 185 |
resized_image = image.resize((target_width, target_height), Image.LANCZOS)
|
| 186 |
-
final_image =
|
| 187 |
|
| 188 |
return final_image
|
| 189 |
-
|
| 190 |
def resize_and_pad_centered(self,
|
| 191 |
image: Image.Image,
|
| 192 |
factor: int,
|
|
@@ -300,7 +300,7 @@ class GraniteVisionEmbProcessor(LlavaNextProcessor):
|
|
| 300 |
images: List[Image.Image],
|
| 301 |
) -> BatchFeature:
|
| 302 |
"""
|
| 303 |
-
Process images.
|
| 304 |
"""
|
| 305 |
# texts_doc = [self.apply_chat_template(self.format_data_wo_role(self.visual_prompt_prefix, img),tokenize=False ) for img in images]
|
| 306 |
texts_doc = [self.visual_prompt_prefix for _ in images]
|
|
@@ -320,7 +320,10 @@ class GraniteVisionEmbProcessor(LlavaNextProcessor):
|
|
| 320 |
|
| 321 |
processed = []
|
| 322 |
for q in queries:
|
| 323 |
-
q = self.query_start + self.query_prefix + q
|
|
|
|
|
|
|
|
|
|
| 324 |
q += suffix + "\n"
|
| 325 |
processed.append(q)
|
| 326 |
|
|
@@ -391,7 +394,7 @@ class GraniteVisionEmbProcessor(LlavaNextProcessor):
|
|
| 391 |
) -> torch.Tensor:
|
| 392 |
"""
|
| 393 |
Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
|
| 394 |
-
query embeddings (`qs`) and passage embeddings (`ps`). For
|
| 395 |
image of a document page.
|
| 396 |
|
| 397 |
Because the embedding tensors are multi-vector and can thus have different shapes, they
|
|
@@ -436,4 +439,4 @@ class GraniteVisionEmbProcessor(LlavaNextProcessor):
|
|
| 436 |
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
| 437 |
|
| 438 |
scores = scores.to(torch.float32)
|
| 439 |
-
return scores
|
|
|
|
| 21 |
return math.floor(number / factor) * factor
|
| 22 |
|
| 23 |
|
| 24 |
+
class ColGraniteVisionProcessor(LlavaNextProcessor):
|
| 25 |
"""
|
| 26 |
+
Processor for ColPali.
|
| 27 |
"""
|
| 28 |
|
| 29 |
visual_prompt_prefix: ClassVar[str] = "<|user|>\n<image>\nDescribe the image.\n"
|
|
|
|
| 140 |
max_size=self.max_size,
|
| 141 |
fill_color=0
|
| 142 |
)
|
| 143 |
+
|
| 144 |
def resize_and_pad_centered_to_long_side(
|
| 145 |
+
self,
|
| 146 |
+
image: Image.Image,
|
| 147 |
+
factor: int,
|
| 148 |
+
min_size: int,
|
| 149 |
+
max_size: int,
|
| 150 |
+
fill_color=0
|
| 151 |
) -> Image.Image:
|
| 152 |
"""
|
| 153 |
Resizes and pads an image such that:
|
|
|
|
| 183 |
|
| 184 |
# Resize the image
|
| 185 |
resized_image = image.resize((target_width, target_height), Image.LANCZOS)
|
| 186 |
+
final_image =resized_image.convert("RGB")
|
| 187 |
|
| 188 |
return final_image
|
| 189 |
+
|
| 190 |
def resize_and_pad_centered(self,
|
| 191 |
image: Image.Image,
|
| 192 |
factor: int,
|
|
|
|
| 300 |
images: List[Image.Image],
|
| 301 |
) -> BatchFeature:
|
| 302 |
"""
|
| 303 |
+
Process images for ColPali.
|
| 304 |
"""
|
| 305 |
# texts_doc = [self.apply_chat_template(self.format_data_wo_role(self.visual_prompt_prefix, img),tokenize=False ) for img in images]
|
| 306 |
texts_doc = [self.visual_prompt_prefix for _ in images]
|
|
|
|
| 320 |
|
| 321 |
processed = []
|
| 322 |
for q in queries:
|
| 323 |
+
q = self.query_start + self.query_prefix + q
|
| 324 |
+
# truncate before it eats actual query content
|
| 325 |
+
if len(q) + len(suffix) > max_length:
|
| 326 |
+
q = q[: max_length - len(suffix) - 1]
|
| 327 |
q += suffix + "\n"
|
| 328 |
processed.append(q)
|
| 329 |
|
|
|
|
| 394 |
) -> torch.Tensor:
|
| 395 |
"""
|
| 396 |
Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
|
| 397 |
+
query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the
|
| 398 |
image of a document page.
|
| 399 |
|
| 400 |
Because the embedding tensors are multi-vector and can thus have different shapes, they
|
|
|
|
| 439 |
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
| 440 |
|
| 441 |
scores = scores.to(torch.float32)
|
| 442 |
+
return scores
|
processor_config.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
{
|
| 2 |
-
"processor_class": "
|
| 3 |
"auto_map": {
|
| 4 |
-
"AutoProcessor": "
|
| 5 |
}
|
| 6 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"processor_class": "ColGraniteVisionProcessor",
|
| 3 |
"auto_map": {
|
| 4 |
+
"AutoProcessor": "processing_colgranitevision.ColGraniteVisionProcessor"
|
| 5 |
}
|
| 6 |
}
|