|  | --- | 
					
						
						|  | language: | 
					
						
						|  | - el | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | tags: | 
					
						
						|  | - automatic-speech-recognition | 
					
						
						|  | - mozilla-foundation/common_voice_7_0 | 
					
						
						|  | - generated_from_trainer | 
					
						
						|  | - el | 
					
						
						|  | - robust-speech-event | 
					
						
						|  | - model_for_talk | 
					
						
						|  | - hf-asr-leaderboard | 
					
						
						|  | datasets: | 
					
						
						|  | - mozilla-foundation/common_voice_7_0 | 
					
						
						|  | model-index: | 
					
						
						|  | - name: XLS-R-300M - Greek | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: Common Voice 7 | 
					
						
						|  | type: mozilla-foundation/common_voice_7_0 | 
					
						
						|  | args: el | 
					
						
						|  | metrics: | 
					
						
						|  | - name: Test WER | 
					
						
						|  | type: wer | 
					
						
						|  | value: 102.23963133640552 | 
					
						
						|  | - name: Test CER | 
					
						
						|  | type: cer | 
					
						
						|  | value: 146.28 | 
					
						
						|  | - task: | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: Robust Speech Event - Dev Data | 
					
						
						|  | type: speech-recognition-community-v2/dev_data | 
					
						
						|  | args: el | 
					
						
						|  | metrics: | 
					
						
						|  | - name: Test WER | 
					
						
						|  | type: wer | 
					
						
						|  | value: 99.92 | 
					
						
						|  | - name: Test CER | 
					
						
						|  | type: cer | 
					
						
						|  | value: 132.38 | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | <!-- This model card has been generated automatically according to the information the Trainer had access to. You | 
					
						
						|  | should probably proofread and complete it, then remove this comment. --> | 
					
						
						|  |  | 
					
						
						|  | # wav2vec2-large-xls-r-300m-greek | 
					
						
						|  |  | 
					
						
						|  | This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - EL dataset. | 
					
						
						|  | It achieves the following results on the evaluation set: | 
					
						
						|  | - Loss: 0.6592 | 
					
						
						|  | - Wer: 0.4564 | 
					
						
						|  |  | 
					
						
						|  | ## Model description | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Intended uses & limitations | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training and evaluation data | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training procedure | 
					
						
						|  |  | 
					
						
						|  | ### Training hyperparameters | 
					
						
						|  |  | 
					
						
						|  | The following hyperparameters were used during training: | 
					
						
						|  | - learning_rate: 0.0003 | 
					
						
						|  | - train_batch_size: 32 | 
					
						
						|  | - eval_batch_size: 32 | 
					
						
						|  | - seed: 42 | 
					
						
						|  | - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | 
					
						
						|  | - lr_scheduler_type: linear | 
					
						
						|  | - lr_scheduler_warmup_steps: 500 | 
					
						
						|  | - num_epochs: 100.0 | 
					
						
						|  | - mixed_precision_training: Native AMP | 
					
						
						|  |  | 
					
						
						|  | ### Training results | 
					
						
						|  |  | 
					
						
						|  | | Training Loss | Epoch | Step  | Validation Loss | Wer    | | 
					
						
						|  | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 
					
						
						|  | | 3.0928        | 4.42  | 500   | 3.0804          | 1.0073 | | 
					
						
						|  | | 1.4505        | 8.85  | 1000  | 0.9038          | 0.7330 | | 
					
						
						|  | | 1.2207        | 13.27 | 1500  | 0.7375          | 0.6045 | | 
					
						
						|  | | 1.0695        | 17.7  | 2000  | 0.7119          | 0.5441 | | 
					
						
						|  | | 1.0104        | 22.12 | 2500  | 0.6069          | 0.5296 | | 
					
						
						|  | | 0.9299        | 26.55 | 3000  | 0.6168          | 0.5206 | | 
					
						
						|  | | 0.8588        | 30.97 | 3500  | 0.6382          | 0.5171 | | 
					
						
						|  | | 0.7942        | 35.4  | 4000  | 0.6048          | 0.4988 | | 
					
						
						|  | | 0.7808        | 39.82 | 4500  | 0.6730          | 0.5084 | | 
					
						
						|  | | 0.743         | 44.25 | 5000  | 0.6749          | 0.5012 | | 
					
						
						|  | | 0.6652        | 48.67 | 5500  | 0.6491          | 0.4735 | | 
					
						
						|  | | 0.6386        | 53.1  | 6000  | 0.6928          | 0.4954 | | 
					
						
						|  | | 0.5945        | 57.52 | 6500  | 0.6359          | 0.4798 | | 
					
						
						|  | | 0.5561        | 61.95 | 7000  | 0.6409          | 0.4799 | | 
					
						
						|  | | 0.5464        | 66.37 | 7500  | 0.6452          | 0.4691 | | 
					
						
						|  | | 0.5119        | 70.8  | 8000  | 0.6376          | 0.4657 | | 
					
						
						|  | | 0.474         | 75.22 | 8500  | 0.6541          | 0.4700 | | 
					
						
						|  | | 0.45          | 79.65 | 9000  | 0.6374          | 0.4571 | | 
					
						
						|  | | 0.4315        | 84.07 | 9500  | 0.6568          | 0.4625 | | 
					
						
						|  | | 0.3967        | 88.5  | 10000 | 0.6636          | 0.4605 | | 
					
						
						|  | | 0.3937        | 92.92 | 10500 | 0.6537          | 0.4597 | | 
					
						
						|  | | 0.3788        | 97.35 | 11000 | 0.6614          | 0.4589 | | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ### Framework versions | 
					
						
						|  |  | 
					
						
						|  | - Transformers 4.16.0.dev0 | 
					
						
						|  | - Pytorch 1.10.1+cu102 | 
					
						
						|  | - Datasets 1.17.1.dev0 | 
					
						
						|  | - Tokenizers 0.11.0 | 
					
						
						|  |  |