Qwen2.5-VL-7B-Instruct Fine-tuned with QLoRA

This model was fine-tuned using Axolotl with QLoRA on Arabic text data. It is based on Qwen/Qwen2.5-VL-7B-Instruct.

Training details

  • Method: QLoRA
  • Epochs: 3
  • Optimizer: Paged AdamW 32bit
  • Quantization: 4-bit (NF4)
  • Hardware: NVIDIA H100 80GB
  • Dataset: Custom Arabic instruction-style text

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("injazsmart/thoth_test")
tokenizer = AutoTokenizer.from_pretrained("injazsmart/thoth_test")

prompt = "اشرح لي معنى الذكاء الاصطناعي بلغة بسيطة"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
13
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for injazsmart/thoth_test

Quantized
(114)
this model

Dataset used to train injazsmart/thoth_test