Qwen2.5-VL-7B-Instruct Fine-tuned with QLoRA
This model was fine-tuned using Axolotl with QLoRA on Arabic text data.
It is based on Qwen/Qwen2.5-VL-7B-Instruct.
Training details
- Method: QLoRA
- Epochs: 3
- Optimizer: Paged AdamW 32bit
- Quantization: 4-bit (NF4)
- Hardware: NVIDIA H100 80GB
- Dataset: Custom Arabic instruction-style text
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("injazsmart/thoth_test")
tokenizer = AutoTokenizer.from_pretrained("injazsmart/thoth_test")
prompt = "اشرح لي معنى الذكاء الاصطناعي بلغة بسيطة"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 13
Model tree for injazsmart/thoth_test
Base model
Qwen/Qwen2.5-VL-7B-Instruct