T5-Tulu-Seed-2 / README.md
itay1itzhak's picture
Improve model card: Update pipeline tag, add project page and HF paper link (#1)
1801905 verified
---
base_model:
- google/t5-v1_1-xxl
datasets:
- allenai/tulu-v2-sft-mixture
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- language-modeling
- causal-lm
- bias-analysis
- cognitive-bias
---
# Model Card for T5-Tulu
## Model Details
**Model Description**
This 🤗 Transformers model was finetuned using LoRA adapters for the paper:
**"Planted in Pretraining, Swayed by Finetuning: A Case Study on the Origins of Cognitive Biases in LLMs"** ([Hugging Face Paper](https://huggingface.co/papers/2507.07186), [arXiv](https://arxiv.org/abs/2507.07186))
We study whether cognitive biases in LLMs emerge from pretraining, instruction tuning, or training randomness.
This is one of 3 identical versions trained with different random seeds.
- **Model type**: encoder-decoder based transformer
- **Language(s)**: English
- **License**: Apache 2.0
- **Finetuned from**: `google/t5-v1_1-xxl`
- **Paper**: https://arxiv.org/abs/2507.07186
- **Project Page**: https://itay1itzhak.github.io/planted-in-pretraining
- **Repository**: https://github.com/itay1itzhak/planted-in-pretraining
## Uses
### Direct Use
For research on cognitive biases in LLMs. Used to test causal impact of pretraining vs instruction tuning.
### Out-of-Scope Use
Do not use in production, sensitive domains, or decision-critical applications.
## How to Get Started with the Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("itay1itzhak/T5-Tulu-Seed-2")
tokenizer = AutoTokenizer.from_pretrained("itay1itzhak/T5-Tulu-Seed-2")
inputs = tokenizer("Example input?", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
```
## Training Details
- Finetuning method: LoRA (high-rank, rank ∈ [64, 512])
- Instruction data: Tulu-2
- Seeds: 3 per setting to evaluate randomness effects
- Batch size: 128 (OLMo) / 64 (T5)
- Learning rate: 1e-6 to 1e-3
- Steps: ~5.5k (OLMo) / ~16k (T5)
- Mixed precision: fp16 (OLMo) / bf16 (T5)
## Evaluation
- Evaluated on 32 cognitive biases from Itzhak et al. (2024) and Malberg et al. (2024)
- Metrics: mean bias score, PCA clustering, MMLU accuracy
- Findings: Biases primarily originate in pretraining; randomness introduces moderate variation
## Environmental Impact
- Hardware: 4× NVIDIA A40
- Estimated time: ~120 GPU hours/model
## Technical Specifications
- Architecture: T5-11B
- Instruction dataset: Tulu-2
## Citation
```bibtex
@misc{itzhak2025plantedpretrainingswayedfinetuning,
title={Planted in Pretraining, Swayed by Finetuning: A Case Study on the Origins of Cognitive Biases in LLMs},
author={Itay Itzhak and Yonatan Belinkov and Gabriel Stanovsky},
year={2025},
eprint={2507.07186},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2507.07186},
}
```