resnet-18

This model is a fine-tuned version of microsoft/resnet-18 on the cifar10 dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Accuracy: 0.1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 333 nan 0.1
0.0 2.0 666 nan 0.1
0.0 3.0 999 nan 0.1
0.0 4.0 1332 nan 0.1
0.0 5.0 1665 nan 0.1
0.0 6.0 1998 nan 0.1
0.0 7.0 2331 nan 0.1
0.0 8.0 2664 nan 0.1
0.0 9.0 2997 nan 0.1
0.0 10.0 3330 nan 0.1
0.0 11.0 3663 nan 0.1
0.0 12.0 3996 nan 0.1
0.0 13.0 4329 nan 0.1
0.0 14.0 4662 nan 0.1
0.0 15.0 4995 nan 0.1
0.0 16.0 5328 nan 0.1
0.0 17.0 5661 nan 0.1
0.0 18.0 5994 nan 0.1
0.0 19.0 6327 nan 0.1
0.0 20.0 6660 nan 0.1
0.0 21.0 6993 nan 0.1
0.0 22.0 7326 nan 0.1
0.0 23.0 7659 nan 0.1
0.0 24.0 7992 nan 0.1
0.0 25.0 8325 nan 0.1
0.0 26.0 8658 nan 0.1
0.0 27.0 8991 nan 0.1
0.0 28.0 9324 nan 0.1
0.0 29.0 9657 nan 0.1
0.0 30.0 9990 nan 0.1
0.0 31.0 10323 nan 0.1
0.0 32.0 10656 nan 0.1
0.0 33.0 10989 nan 0.1
0.0 34.0 11322 nan 0.1
0.0 35.0 11655 nan 0.1
0.0 36.0 11988 nan 0.1
0.0 37.0 12321 nan 0.1
0.0 38.0 12654 nan 0.1
0.0 39.0 12987 nan 0.1
0.0 40.0 13320 nan 0.1
0.0 41.0 13653 nan 0.1
0.0 42.0 13986 nan 0.1
0.0 43.0 14319 nan 0.1
0.0 44.0 14652 nan 0.1
0.0 45.0 14985 nan 0.1
0.0 46.0 15318 nan 0.1
0.0 47.0 15651 nan 0.1
0.0 48.0 15984 nan 0.1
0.0 49.0 16317 nan 0.1
0.0 50.0 16650 nan 0.1
0.0 51.0 16983 nan 0.1
0.0 52.0 17316 nan 0.1
0.0 53.0 17649 nan 0.1
0.0 54.0 17982 nan 0.1
0.0 55.0 18315 nan 0.1
0.0 56.0 18648 nan 0.1
0.0 57.0 18981 nan 0.1
0.0 58.0 19314 nan 0.1
0.0 59.0 19647 nan 0.1
0.0 60.0 19980 nan 0.1
0.0 61.0 20313 nan 0.1
0.0 62.0 20646 nan 0.1
0.0 63.0 20979 nan 0.1
0.0 64.0 21312 nan 0.1
0.0 65.0 21645 nan 0.1
0.0 66.0 21978 nan 0.1
0.0 67.0 22311 nan 0.1
0.0 68.0 22644 nan 0.1
0.0 69.0 22977 nan 0.1
0.0 70.0 23310 nan 0.1
0.0 71.0 23643 nan 0.1
0.0 72.0 23976 nan 0.1
0.0 73.0 24309 nan 0.1
0.0 74.0 24642 nan 0.1
0.0 75.0 24975 nan 0.1
0.0 76.0 25308 nan 0.1
0.0 77.0 25641 nan 0.1
0.0 78.0 25974 nan 0.1
0.0 79.0 26307 nan 0.1
0.0 80.0 26640 nan 0.1
0.0 81.0 26973 nan 0.1
0.0 82.0 27306 nan 0.1
0.0 83.0 27639 nan 0.1
0.0 84.0 27972 nan 0.1
0.0 85.0 28305 nan 0.1
0.0 86.0 28638 nan 0.1
0.0 87.0 28971 nan 0.1
0.0 88.0 29304 nan 0.1
0.0 89.0 29637 nan 0.1
0.0 90.0 29970 nan 0.1
0.0 91.0 30303 nan 0.1
0.0 92.0 30636 nan 0.1
0.0 93.0 30969 nan 0.1
0.0 94.0 31302 nan 0.1
0.0 95.0 31635 nan 0.1
0.0 96.0 31968 nan 0.1
0.0 97.0 32301 nan 0.1
0.0 98.0 32634 nan 0.1
0.0 99.0 32967 nan 0.1
0.0 100.0 33300 nan 0.1

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
1
Safetensors
Model size
11.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jialicheng/cifar10_resnet-18

Finetuned
(626)
this model