Fine-tuned XLSR-53 large model for speech recognition in Polish
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Polish using the train and validation splits of Common Voice 6.1. When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
Usage
The model can be used directly (without a language model) as follows...
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-polish")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "pl"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-polish"
SAMPLES = 5
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
| Reference | Prediction | 
|---|---|
| """CZY DRZWI BYŁY ZAMKNIĘTE?""" | PRZY DRZWI BYŁY ZAMKNIĘTE | 
| GDZIEŻ TU POWÓD DO WYRZUTÓW? | WGDZIEŻ TO POM DO WYRYDÓ | 
| """O TEM JEDNAK NIE BYŁO MOWY.""" | O TEM JEDNAK NIE BYŁO MOWY | 
| LUBIĘ GO. | LUBIĄ GO | 
| — TO MI NIE POMAGA. | TO MNIE NIE POMAGA | 
| WCIĄŻ LUDZIE WYSIADAJĄ PRZED ZAMKIEM, Z MIASTA, Z PRAGI. | WCIĄŻ LUDZIE WYSIADAJĄ PRZED ZAMKIEM Z MIASTA Z PRAGI | 
| ALE ON WCALE INACZEJ NIE MYŚLAŁ. | ONY MONITCENIE PONACZUŁA NA MASU | 
| A WY, CO TAK STOICIE? | A WY CO TAK STOICIE | 
| A TEN PRZYRZĄD DO CZEGO SŁUŻY? | A TEN PRZYRZĄD DO CZEGO SŁUŻY | 
| NA JUTRZEJSZYM KOLOKWIUM BĘDZIE PIĘĆ PYTAŃ OTWARTYCH I TEST WIELOKROTNEGO WYBORU. | NAJUTRZEJSZYM KOLOKWIUM BĘDZIE PIĘĆ PYTAŃ OTWARTYCH I TEST WIELOKROTNEGO WYBORU | 
Evaluation
- To evaluate on 
mozilla-foundation/common_voice_6_0with splittest 
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset mozilla-foundation/common_voice_6_0 --config pl --split test
- To evaluate on 
speech-recognition-community-v2/dev_data 
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset speech-recognition-community-v2/dev_data --config pl --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr53-large-polish,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {P}olish},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-polish}},
  year={2021}
}
- Downloads last month
 - 1,315,019
 
Dataset used to train jonatasgrosman/wav2vec2-large-xlsr-53-polish
Spaces using jonatasgrosman/wav2vec2-large-xlsr-53-polish 8
Evaluation results
- Test WER on Common Voice plself-reported14.210
 - Test CER on Common Voice plself-reported3.490
 - Test WER (+LM) on Common Voice plself-reported10.980
 - Test CER (+LM) on Common Voice plself-reported2.930
 - Dev WER on Robust Speech Event - Dev Dataself-reported33.180
 - Dev CER on Robust Speech Event - Dev Dataself-reported15.920
 - Dev WER (+LM) on Robust Speech Event - Dev Dataself-reported29.310
 - Dev CER (+LM) on Robust Speech Event - Dev Dataself-reported15.170