Upload handler_template.py with huggingface_hub
Browse files- handler_template.py +65 -0
handler_template.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import os
|
5 |
+
import base64
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
import io
|
10 |
+
|
11 |
+
class BaseHandler:
|
12 |
+
def __init__(self):
|
13 |
+
"""Initialize the handler with model-specific configurations"""
|
14 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
self.model = None
|
16 |
+
self.initialized = False
|
17 |
+
|
18 |
+
def initialize(self):
|
19 |
+
"""Load model and other resources"""
|
20 |
+
# This method should be implemented by each specific handler
|
21 |
+
raise NotImplementedError
|
22 |
+
|
23 |
+
def preprocess(self, data):
|
24 |
+
"""Preprocess the input data"""
|
25 |
+
# This method should be implemented by each specific handler
|
26 |
+
raise NotImplementedError
|
27 |
+
|
28 |
+
def inference(self, inputs):
|
29 |
+
"""Run inference with the preprocessed inputs"""
|
30 |
+
# This method should be implemented by each specific handler
|
31 |
+
raise NotImplementedError
|
32 |
+
|
33 |
+
def postprocess(self, inference_output):
|
34 |
+
"""Post-process the model output"""
|
35 |
+
# This method should be implemented by each specific handler
|
36 |
+
raise NotImplementedError
|
37 |
+
|
38 |
+
def __call__(self, data):
|
39 |
+
"""Handle a request to the model"""
|
40 |
+
# Initialize the model if not already done
|
41 |
+
if not self.initialized:
|
42 |
+
self.initialize()
|
43 |
+
|
44 |
+
# Process the request
|
45 |
+
preprocessed_data = self.preprocess(data)
|
46 |
+
inference_output = self.inference(preprocessed_data)
|
47 |
+
output = self.postprocess(inference_output)
|
48 |
+
|
49 |
+
return output
|
50 |
+
|
51 |
+
def encode_image(self, image):
|
52 |
+
"""Encode a PIL Image to base64"""
|
53 |
+
buffered = io.BytesIO()
|
54 |
+
image.save(buffered, format="PNG")
|
55 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
56 |
+
return img_str
|
57 |
+
|
58 |
+
def decode_image(self, image_str):
|
59 |
+
"""Decode a base64 string to PIL Image"""
|
60 |
+
img_data = base64.b64decode(image_str)
|
61 |
+
return Image.open(io.BytesIO(img_data))
|
62 |
+
|
63 |
+
def svg_to_base64(self, svg_content):
|
64 |
+
"""Convert SVG content to base64"""
|
65 |
+
return base64.b64encode(svg_content.encode("utf-8")).decode("utf-8")
|