SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'PeftModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kangbeom/multilingual-e5-large")
# Run inference
sentences = [
'query: 주문의 설명은 무엇인가?',
'passage: 〈표 2〉 천연비누 쇼핑몰 시스템의 단어 사전 일부 단어영문명약어명동의어설명주문ORDERORD상품의 생산이나 서비스 의 제공을 요구번호NUMBERNo차례를 나타내거나 식별하기 위해 붙이는 숫자일자DATEDT날짜, 일날짜...',
'passage: 〈표 〉 Binary NAF Method 스칼라곱 연산과 RENAF Method 멱 승 연산 종류연산 결과 BinaryNAF \\( (100-1)_ {\\text { NAF } } \\cdot 2=2 * 2 \\rightarrow 2 * 4 \\rightarrow 2 * 3-2=14 \\)RENAF \\( 2 ^ { (100)-11_ {\\text { RENAF } } } =2 * 2 \\rightarrow 4 * 4 \\rightarrow 16 * 16 / 2=128 \\)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.5568, 0.1304],
# [0.5568, 1.0000, 0.1720],
# [0.1304, 0.1720, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
lora-evaluation - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.467 |
| cosine_accuracy@3 | 0.699 |
| cosine_accuracy@5 | 0.786 |
| cosine_accuracy@10 | 0.8755 |
| cosine_precision@1 | 0.467 |
| cosine_precision@3 | 0.233 |
| cosine_precision@5 | 0.1572 |
| cosine_precision@10 | 0.0876 |
| cosine_recall@1 | 0.467 |
| cosine_recall@3 | 0.699 |
| cosine_recall@5 | 0.786 |
| cosine_recall@10 | 0.8755 |
| cosine_ndcg@10 | 0.668 |
| cosine_mrr@10 | 0.6018 |
| cosine_map@100 | 0.6076 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,200 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 11 tokens
- mean: 28.15 tokens
- max: 105 tokens
- min: 10 tokens
- mean: 127.24 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 query: 실험에서 그림 12(d)는 참값에 아주 근접했나요?passage: 그림 12(d)는 본 논문에서 제안하는 알고리즘을 이용한 디블러링 결과영상을 이용하여 3차원 형상 복원을 수행한 결과이다.query: 표에서, 15mm의 메쉬분할 수행시간은 얼마인가?passage: 〈표 5〉 임계값에 따른 메쉬정보 및 수행시간(데이터 A) 임계값 ( ( \mathrm { mm } ) )분할전(15 )(10 )(5 )총메쉬수(8,200 )(163,124 )(297,207 )( 1,185,145 )평균에지길이( 20.43 )( 6.52 )( 4.85 )( 2.45 )수행시간 (sec)메쉬분할( 0.113 )( 0.181 )( 0.785 )거리기반 대응( 0.137 )( 2.966 )( 5.453 )( 21.228 )query: 기업 시스템 인증 및 정보자산 보호관리에 주로 사용되는 표준은 무엇일까?passage: 각 표준 특성 및 취약점 표준특성단일 표준으로 적용 시 취약점ISO 20022금융기관 상호 운영을 위한 표준 모듈간 상호보안 부족 클라이언트의 행동에 관한 보안기능 부족ISO 27001기업 시스템 인증 및 정보자산 보호관리 모듈간 상호보안 부족 기술적인 보안 부족Common CriteriaIT 제품의 개발, 평가, 조달 지침현재 인터넷 뱅킹 관련 보호프로파일 없음웹 환경 구축 및 운영을 위한 보안 관리 지침웹 환경 안전을 위한 기술 특화된 위협에 대한 대응 부족 기능 요구사항 부족 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 4per_device_eval_batch_size: 4num_train_epochs: 2multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | lora-evaluation_cosine_ndcg@10 |
|---|---|---|---|
| 0.2778 | 500 | 0.2637 | 0.6548 |
| 0.5556 | 1000 | 0.0663 | 0.6597 |
| 0.8333 | 1500 | 0.0647 | 0.6609 |
| 1.0 | 1800 | - | 0.6658 |
| 1.1111 | 2000 | 0.0432 | 0.6680 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.55.4
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Model tree for kangbeom/multilingual-e5-large
Base model
intfloat/multilingual-e5-largeEvaluation results
- Cosine Accuracy@1 on lora evaluationself-reported0.467
- Cosine Accuracy@3 on lora evaluationself-reported0.699
- Cosine Accuracy@5 on lora evaluationself-reported0.786
- Cosine Accuracy@10 on lora evaluationself-reported0.875
- Cosine Precision@1 on lora evaluationself-reported0.467
- Cosine Precision@3 on lora evaluationself-reported0.233
- Cosine Precision@5 on lora evaluationself-reported0.157
- Cosine Precision@10 on lora evaluationself-reported0.088
- Cosine Recall@1 on lora evaluationself-reported0.467
- Cosine Recall@3 on lora evaluationself-reported0.699