BERTopic_Economic

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("karinegabsschon/BERTopic_Economic")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 37
  • Number of training documents: 1290
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 electric - car - cars - vehicles - new 10 -1_electric_car_cars_vehicles
0 byd - chinese - china - market - electric 249 0_byd_chinese_china_market
1 tesla - sales - musk - year - europe 131 1_tesla_sales_musk_year
2 new - used - year - car - month 86 2_new_used_year_car
3 rivian - motley - motley fool - fool - stocks 55 3_rivian_motley_motley fool_fool
4 charging - charging points - points - stations - charging stations 52 4_charging_charging points_points_stations
5 tesla - musk - trump - elon - elon musk 45 5_tesla_musk_trump_elon
6 spain - electric - moves - ebro - plan 38 6_spain_electric_moves_ebro
7 charging - czech - ev charging - slovakia - czech republic 37 7_charging_czech_ev charging_slovakia
8 units - ukraine - used - region - vehicles 33 8_units_ukraine_used_region
9 tesla - musk - gerber - tsla - elon 33 9_tesla_musk_gerber_tsla
10 hyundai - billion - honda - plant - nissan 32 10_hyundai_billion_honda_plant
11 tax - car - pay - car tax - drivers 31 11_tax_car_pay_car tax
12 percent - cars - previous year - registrations - previous 30 12_percent_cars_previous year_registrations
13 million - iea - sales - global - electric 29 13_million_iea_sales_global
14 cars - tax - purchase - federal - government 29 14_cars_tax_purchase_federal
15 xiaomi - nio - li - chinese - yu7 28 15_xiaomi_nio_li_chinese
16 quarter - tesla - sales - electric vehicle - gm 26 16_quarter_tesla_sales_electric vehicle
17 volvo - audi - jobs - cent - company 23 17_volvo_audi_jobs_cent
18 public - charging - uk - charge - ev 23 18_public_charging_uk_charge
19 discounts - combustion - dudenhöffer - cars - prices 23 19_discounts_combustion_dudenhöffer_cars
20 euros - electric - french - aid - energy 22 20_euros_electric_french_aid
21 china - shanghai - chinese - market - car 22 21_china_shanghai_chinese_market
22 id - vw - every1 - id every1 - 000 euros 19 22_id_vw_every1_id every1
23 ferrari - stellantis - italy - elkann - october 17 23_ferrari_stellantis_italy_elkann
24 foxconn - mitsubishi - japanese - nissan - mitsubishi motors 17 24_foxconn_mitsubishi_japanese_nissan
25 belarus - charging - stations - electric - electric charging 16 25_belarus_charging_stations_electric
26 volkswagen - europe - vw - group - percent 16 26_volkswagen_europe_vw_group
27 german - vw - market - group - percent 15 27_german_vw_market_group
28 used - used car - cars - percent - autoscout24 15 28_used_used car_cars_percent
29 vinfast - vf - vietnamese - vinfast auto - quarter 14 29_vinfast_vf_vietnamese_vinfast auto
30 drivers - home - ev - petrol - charging 13 30_drivers_home_ev_petrol
31 uk - car - government - mandate - evs 13 31_uk_car_government_mandate
32 pod - pod point - point - edf - charging 13 32_pod_pod point_point_edf
33 india - tata - ev - tata motors - plans 12 33_india_tata_ev_tata motors
34 russia - electric - sales - passenger - voyah 12 34_russia_electric_sales_passenger
35 analysts - gm - energy - general motors - general 11 35_analysts_gm_energy_general motors

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.0.2
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.8
  • Pandas: 2.2.2
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 4.1.0
  • Transformers: 4.53.0
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.11.13
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support