BERTopic_Economic
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("karinegabsschon/BERTopic_Economic")
topic_model.get_topic_info()
Topic overview
- Number of topics: 37
- Number of training documents: 1290
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | electric - car - cars - vehicles - new | 10 | -1_electric_car_cars_vehicles |
0 | byd - chinese - china - market - electric | 249 | 0_byd_chinese_china_market |
1 | tesla - sales - musk - year - europe | 131 | 1_tesla_sales_musk_year |
2 | new - used - year - car - month | 86 | 2_new_used_year_car |
3 | rivian - motley - motley fool - fool - stocks | 55 | 3_rivian_motley_motley fool_fool |
4 | charging - charging points - points - stations - charging stations | 52 | 4_charging_charging points_points_stations |
5 | tesla - musk - trump - elon - elon musk | 45 | 5_tesla_musk_trump_elon |
6 | spain - electric - moves - ebro - plan | 38 | 6_spain_electric_moves_ebro |
7 | charging - czech - ev charging - slovakia - czech republic | 37 | 7_charging_czech_ev charging_slovakia |
8 | units - ukraine - used - region - vehicles | 33 | 8_units_ukraine_used_region |
9 | tesla - musk - gerber - tsla - elon | 33 | 9_tesla_musk_gerber_tsla |
10 | hyundai - billion - honda - plant - nissan | 32 | 10_hyundai_billion_honda_plant |
11 | tax - car - pay - car tax - drivers | 31 | 11_tax_car_pay_car tax |
12 | percent - cars - previous year - registrations - previous | 30 | 12_percent_cars_previous year_registrations |
13 | million - iea - sales - global - electric | 29 | 13_million_iea_sales_global |
14 | cars - tax - purchase - federal - government | 29 | 14_cars_tax_purchase_federal |
15 | xiaomi - nio - li - chinese - yu7 | 28 | 15_xiaomi_nio_li_chinese |
16 | quarter - tesla - sales - electric vehicle - gm | 26 | 16_quarter_tesla_sales_electric vehicle |
17 | volvo - audi - jobs - cent - company | 23 | 17_volvo_audi_jobs_cent |
18 | public - charging - uk - charge - ev | 23 | 18_public_charging_uk_charge |
19 | discounts - combustion - dudenhöffer - cars - prices | 23 | 19_discounts_combustion_dudenhöffer_cars |
20 | euros - electric - french - aid - energy | 22 | 20_euros_electric_french_aid |
21 | china - shanghai - chinese - market - car | 22 | 21_china_shanghai_chinese_market |
22 | id - vw - every1 - id every1 - 000 euros | 19 | 22_id_vw_every1_id every1 |
23 | ferrari - stellantis - italy - elkann - october | 17 | 23_ferrari_stellantis_italy_elkann |
24 | foxconn - mitsubishi - japanese - nissan - mitsubishi motors | 17 | 24_foxconn_mitsubishi_japanese_nissan |
25 | belarus - charging - stations - electric - electric charging | 16 | 25_belarus_charging_stations_electric |
26 | volkswagen - europe - vw - group - percent | 16 | 26_volkswagen_europe_vw_group |
27 | german - vw - market - group - percent | 15 | 27_german_vw_market_group |
28 | used - used car - cars - percent - autoscout24 | 15 | 28_used_used car_cars_percent |
29 | vinfast - vf - vietnamese - vinfast auto - quarter | 14 | 29_vinfast_vf_vietnamese_vinfast auto |
30 | drivers - home - ev - petrol - charging | 13 | 30_drivers_home_ev_petrol |
31 | uk - car - government - mandate - evs | 13 | 31_uk_car_government_mandate |
32 | pod - pod point - point - edf - charging | 13 | 32_pod_pod point_point_edf |
33 | india - tata - ev - tata motors - plans | 12 | 33_india_tata_ev_tata motors |
34 | russia - electric - sales - passenger - voyah | 12 | 34_russia_electric_sales_passenger |
35 | analysts - gm - energy - general motors - general | 11 | 35_analysts_gm_energy_general motors |
Training hyperparameters
- calculate_probabilities: False
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: True
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 2.0.2
- HDBSCAN: 0.8.40
- UMAP: 0.5.8
- Pandas: 2.2.2
- Scikit-Learn: 1.6.1
- Sentence-transformers: 4.1.0
- Transformers: 4.53.0
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.11.13
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support