BERTopic_Legal

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("karinegabsschon/BERTopic_Legal")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 9
  • Number of training documents: 199
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 electric - vehicles - ev - electric vehicles - charging 6 -1_electric_vehicles_ev_electric vehicles
0 cars - vehicles - electric - car - parking 58 0_cars_vehicles_electric_car
1 chinese - electric - byd - china - cars 30 1_chinese_electric_byd_china
2 charging - charge - ev - public - electric 27 2_charging_charge_ev_public
3 tesla - musk - dollars - elon - elon musk 23 3_tesla_musk_dollars_elon
4 new - electric - vehicles - car - drivers 21 4_new_electric_vehicles_car
5 porsche - taycan - car - electric - garage 13 5_porsche_taycan_car_electric
6 foxconn - mitsubishi - japanese - nissan - electric 11 6_foxconn_mitsubishi_japanese_nissan
7 nikola - bankruptcy - lucid - northvolt - assets 10 7_nikola_bankruptcy_lucid_northvolt

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.0.2
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.8
  • Pandas: 2.2.2
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 4.1.0
  • Transformers: 4.53.0
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.11.13
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support