SentenceTransformer based on klue/bert-base
This is a sentence-transformers model finetuned from klue/bert-base on the klue dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/bert-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: ko
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kgmyh/klue_bert-base_finetuning")
# Run inference
sentences = [
'klue-sts-v1_dev_00159',
'airbnb-sampled',
'2층에 얇은 벽 하나 사이로 방이 두 개 있습니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
klue
- Dataset: klue at 349481e
- Size: 11,668 training samples
- Columns:
guid,source,sentence1,sentence2, andlabels - Approximate statistics based on the first 1000 samples:
guid source sentence1 sentence2 labels type string string string string dict details - min: 17 tokens
- mean: 17.91 tokens
- max: 18 tokens
- min: 7 tokens
- mean: 10.01 tokens
- max: 11 tokens
- min: 7 tokens
- mean: 19.55 tokens
- max: 61 tokens
- min: 6 tokens
- mean: 19.35 tokens
- max: 60 tokens
- Samples:
guid source sentence1 sentence2 labels klue-sts-v1_train_00000airbnb-rtt숙소 위치는 찾기 쉽고 일반적인 한국의 반지하 숙소입니다.숙박시설의 위치는 쉽게 찾을 수 있고 한국의 대표적인 반지하 숙박시설입니다.{'label': 3.7, 'real-label': 3.714285714285714, 'binary-label': 1}klue-sts-v1_train_00001policy-sampled위반행위 조사 등을 거부·방해·기피한 자는 500만원 이하 과태료 부과 대상이다.시민들 스스로 자발적인 예방 노력을 한 것은 아산 뿐만이 아니었다.{'label': 0.0, 'real-label': 0.0, 'binary-label': 0}klue-sts-v1_train_00002paraKQC-sampled회사가 보낸 메일은 이 지메일이 아니라 다른 지메일 계정으로 전달해줘.사람들이 주로 네이버 메일을 쓰는 이유를 알려줘{'label': 0.3, 'real-label': 0.3333333333333333, 'binary-label': 0} - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
klue
- Dataset: klue at 349481e
- Size: 519 evaluation samples
- Columns:
guid,source,sentence1,sentence2, andlabels - Approximate statistics based on the first 519 samples:
guid source sentence1 sentence2 labels type string string string string dict details - min: 17 tokens
- mean: 17.82 tokens
- max: 18 tokens
- min: 7 tokens
- mean: 9.72 tokens
- max: 11 tokens
- min: 6 tokens
- mean: 19.47 tokens
- max: 61 tokens
- min: 7 tokens
- mean: 19.42 tokens
- max: 58 tokens
- Samples:
guid source sentence1 sentence2 labels klue-sts-v1_dev_00000airbnb-rtt무엇보다도 호스트분들이 너무 친절하셨습니다.무엇보다도, 호스트들은 매우 친절했습니다.{'label': 4.9, 'real-label': 4.857142857142857, 'binary-label': 1}klue-sts-v1_dev_00001airbnb-sampled주요 관광지 모두 걸어서 이동가능합니다.위치는 피렌체 중심가까지 걸어서 이동 가능합니다.{'label': 1.4, 'real-label': 1.428571428571429, 'binary-label': 0}klue-sts-v1_dev_00002policy-sampled학생들의 균형 있는 영어능력을 향상시킬 수 있는 학교 수업을 유도하기 위해 2018학년도 수능부터 도입된 영어 영역 절대평가는 올해도 유지한다.영어 영역의 경우 학생들이 한글 해석본을 암기하는 문제를 해소하기 위해 2016학년도부터 적용했던 EBS 연계 방식을 올해도 유지한다.{'label': 1.3, 'real-label': 1.285714285714286, 'binary-label': 0} - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 64weight_decay: 0.01num_train_epochs: 1warmup_steps: 100load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 100log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0137 | 10 | 2.9128 | - |
| 0.0274 | 20 | 2.8336 | - |
| 0.0411 | 30 | 2.8053 | - |
| 0.0548 | 40 | 2.7919 | - |
| 0.0685 | 50 | 2.7815 | - |
| 0.0822 | 60 | 2.7722 | - |
| 0.0959 | 70 | 2.7779 | - |
| 0.1096 | 80 | 2.7768 | - |
| 0.1233 | 90 | 2.7846 | - |
| 0.1370 | 100 | 2.7747 | - |
| 0.1507 | 110 | 2.7786 | - |
| 0.1644 | 120 | 2.7719 | - |
| 0.1781 | 130 | 2.7745 | - |
| 0.1918 | 140 | 2.7747 | - |
| 0.2055 | 150 | 2.7749 | - |
| 0.2192 | 160 | 2.7715 | - |
| 0.2329 | 170 | 2.7863 | - |
| 0.2466 | 180 | 2.7732 | - |
| 0.2603 | 190 | 2.7744 | - |
| 0.2740 | 200 | 2.7754 | - |
| 0.2877 | 210 | 2.7726 | - |
| 0.3014 | 220 | 2.7718 | - |
| 0.3151 | 230 | 2.774 | - |
| 0.3288 | 240 | 2.7748 | - |
| 0.3425 | 250 | 2.7708 | - |
| 0.3562 | 260 | 2.7728 | - |
| 0.3699 | 270 | 2.7746 | - |
| 0.3836 | 280 | 2.7739 | - |
| 0.3973 | 290 | 2.7721 | - |
| 0.4110 | 300 | 2.7747 | - |
| 0.4247 | 310 | 2.7746 | - |
| 0.4384 | 320 | 2.7732 | - |
| 0.4521 | 330 | 2.7739 | - |
| 0.4658 | 340 | 2.7724 | - |
| 0.4795 | 350 | 2.7736 | - |
| 0.4932 | 360 | 2.7736 | - |
| 0.5068 | 370 | 2.7735 | - |
| 0.5205 | 380 | 2.7734 | - |
| 0.5342 | 390 | 2.7726 | - |
| 0.5479 | 400 | 2.7734 | - |
| 0.5616 | 410 | 2.7726 | - |
| 0.5753 | 420 | 2.7731 | - |
| 0.5890 | 430 | 2.7735 | - |
| 0.6027 | 440 | 2.7734 | - |
| 0.6164 | 450 | 2.7741 | - |
| 0.6301 | 460 | 2.7737 | - |
| 0.6438 | 470 | 2.7717 | - |
| 0.6575 | 480 | 2.7739 | - |
| 0.6712 | 490 | 2.7727 | - |
| 0.6849 | 500 | 2.7729 | 4.129 |
| 0.6986 | 510 | 2.7723 | - |
| 0.7123 | 520 | 2.7729 | - |
| 0.7260 | 530 | 2.7736 | - |
| 0.7397 | 540 | 2.7725 | - |
| 0.7534 | 550 | 2.7735 | - |
| 0.7671 | 560 | 2.7737 | - |
| 0.7808 | 570 | 2.7731 | - |
| 0.7945 | 580 | 2.7733 | - |
| 0.8082 | 590 | 2.7725 | - |
| 0.8219 | 600 | 2.773 | - |
| 0.8356 | 610 | 2.7729 | - |
| 0.8493 | 620 | 2.7724 | - |
| 0.8630 | 630 | 2.7719 | - |
| 0.8767 | 640 | 2.7719 | - |
| 0.8904 | 650 | 2.7735 | - |
| 0.9041 | 660 | 2.7731 | - |
| 0.9178 | 670 | 2.7716 | - |
| 0.9315 | 680 | 2.7736 | - |
| 0.9452 | 690 | 2.7734 | - |
| 0.9589 | 700 | 2.7728 | - |
| 0.9726 | 710 | 2.7721 | - |
| 0.9863 | 720 | 2.7726 | - |
| 1.0 | 730 | 2.6339 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cpu
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -
Model tree for kgmyh/klue_bert-base_finetuning
Base model
klue/bert-base