m1
This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1438
- Accuracy: 0.9710
- F1: 0.9706
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 1.0816 | 1.0 | 318 | 0.2407 | 0.9432 | 0.9425 |
| 0.0569 | 2.0 | 636 | 0.1517 | 0.9661 | 0.9658 |
| 0.0145 | 3.0 | 954 | 0.1545 | 0.9690 | 0.9686 |
| 0.0056 | 4.0 | 1272 | 0.1431 | 0.9719 | 0.9716 |
| 0.0018 | 5.0 | 1590 | 0.1438 | 0.9710 | 0.9706 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 3
Model tree for kitsunea/m1
Base model
answerdotai/ModernBERT-large