Update README.md
Browse files
README.md
CHANGED
@@ -3,22 +3,24 @@ pipeline_tag: robotics
|
|
3 |
tags:
|
4 |
- lerobot
|
5 |
library_name: lerobot
|
|
|
|
|
6 |
---
|
7 |
|
8 |
-
SmolVLA: A vision-language-action model for affordable and efficient robotics
|
9 |
|
10 |
Resources and technical documentation:
|
11 |
|
12 |
-
[Train using Google Colab Notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/lerobot/training-smolvla.ipynb#scrollTo=ZO52lcQtxseE)
|
13 |
-
|
14 |
-
[SmolVLA HF Documentation](https://huggingface.co/docs/lerobot/smolvla)
|
15 |
-
|
16 |
[SmolVLA Paper](https://huggingface.co/papers/2506.01844)
|
17 |
|
18 |
[SmolVLA Blogpost](https://huggingface.co/blog/smolvla)
|
19 |
|
20 |
[Code](https://github.com/huggingface/lerobot/blob/main/lerobot/common/policies/smolvla/modeling_smolvla.py)
|
21 |
|
|
|
|
|
|
|
|
|
22 |
Designed by Hugging Face.
|
23 |
|
24 |
This model has 450M parameters in total.
|
@@ -32,20 +34,27 @@ pip install -e ".[smolvla]"
|
|
32 |
Example of finetuning the smolvla pretrained model (`smolvla_base`):
|
33 |
```bash
|
34 |
python lerobot/scripts/train.py \
|
35 |
-
--policy.path=lerobot/smolvla_base \
|
36 |
-
--dataset.repo_id=
|
37 |
-
--batch_size=64 \
|
38 |
-
--steps=
|
|
|
|
|
|
|
|
|
39 |
```
|
40 |
|
41 |
Example of finetuning the smolvla neural network with pretrained VLM and action expert
|
42 |
intialized from scratch:
|
43 |
```bash
|
44 |
python lerobot/scripts/train.py \
|
45 |
-
--
|
46 |
-
--
|
47 |
-
--
|
48 |
-
--
|
|
|
|
|
|
|
49 |
```
|
50 |
|
51 |
Example of using the smolvla pretrained model outside LeRobot training framework:
|
|
|
3 |
tags:
|
4 |
- lerobot
|
5 |
library_name: lerobot
|
6 |
+
datasets:
|
7 |
+
- lerobot/svla_so101_pickplace
|
8 |
---
|
9 |
|
10 |
+
## SmolVLA: A vision-language-action model for affordable and efficient robotics
|
11 |
|
12 |
Resources and technical documentation:
|
13 |
|
|
|
|
|
|
|
|
|
14 |
[SmolVLA Paper](https://huggingface.co/papers/2506.01844)
|
15 |
|
16 |
[SmolVLA Blogpost](https://huggingface.co/blog/smolvla)
|
17 |
|
18 |
[Code](https://github.com/huggingface/lerobot/blob/main/lerobot/common/policies/smolvla/modeling_smolvla.py)
|
19 |
|
20 |
+
[Train using Google Colab Notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/lerobot/training-smolvla.ipynb#scrollTo=ZO52lcQtxseE)
|
21 |
+
|
22 |
+
[SmolVLA HF Documentation](https://huggingface.co/docs/lerobot/smolvla)
|
23 |
+
|
24 |
Designed by Hugging Face.
|
25 |
|
26 |
This model has 450M parameters in total.
|
|
|
34 |
Example of finetuning the smolvla pretrained model (`smolvla_base`):
|
35 |
```bash
|
36 |
python lerobot/scripts/train.py \
|
37 |
+
--policy.path=lerobot/smolvla_base \
|
38 |
+
--dataset.repo_id=lerobot/svla_so101_pickplace \
|
39 |
+
--batch_size=64 \
|
40 |
+
--steps=20000 \
|
41 |
+
--output_dir=outputs/train/my_smolvla \
|
42 |
+
--job_name=my_smolvla_training \
|
43 |
+
--policy.device=cuda \
|
44 |
+
--wandb.enable=true
|
45 |
```
|
46 |
|
47 |
Example of finetuning the smolvla neural network with pretrained VLM and action expert
|
48 |
intialized from scratch:
|
49 |
```bash
|
50 |
python lerobot/scripts/train.py \
|
51 |
+
--dataset.repo_id=lerobot/svla_so101_pickplace \
|
52 |
+
--batch_size=64 \
|
53 |
+
--steps=200000 \
|
54 |
+
--output_dir=outputs/train/my_smolvla \
|
55 |
+
--job_name=my_smolvla_training \
|
56 |
+
--policy.device=cuda \
|
57 |
+
--wandb.enable=true
|
58 |
```
|
59 |
|
60 |
Example of using the smolvla pretrained model outside LeRobot training framework:
|