LiberalMind version 1.5 – the most accurate neural network with up to 10B parameters created in Russia (English/Russian text)
contact: Twitter: https://x.com/BogUnusov Telegram: @Quloneco email: [email protected]
🧠 Adaptive Reasoning Loop with Critic-Driven GMPo and Intuition Feedback LiberalMind v1.5 is trained using a custom reinforcement learning system that extends classical RLHF and diverges from standard GMPO (Generative Model Policy Optimization). Instead, it employs a reasoning-centered pipeline we call GMPo (Generate–Match–Plan–Optimize) augmented with a Critic Loop and a novel intuition-based meta-signal.
This design targets more explainable, structurally grounded reasoning via RL updates, optimized with KL-divergence regularization and guided feedback from a Critic module.
🔁 GMPo Pipeline (as Structured Policy) The agent processes tasks through four internal reasoning stages:
The whole system is based on GMPO (Generative Model Policy Optimization) and the abbreviation just explains the new changes.
G — Generate: Produce an initial draft 𝑎 0 ∼ 𝜋 𝜃 ( 𝑎 ∣ 𝑠 ) a 0 ∼π θ (a∣s)
M — Match: Compare the answer’s logic and format against input constraints
P — Plan: Devise a correction or refinement plan 𝑝 ∼ 𝜋 𝜃 𝑝 𝑙 𝑎 𝑛 ( 𝑝 ∣ 𝑎 0 , 𝑠 ) p∼π θ plan (p∣a 0 ,s)
O — Optimize: Apply improvements to produce the final answer 𝑎 ∗ a ∗
This forms a structured trajectory 𝜏
{ 𝑎 0 , 𝑝 , 𝑎 ∗ } τ={a 0 ,p,a ∗ }, considered as the policy rollout.
🧾 Critic-Driven Feedback (External Evaluator) Unlike traditional GMPO (which omits a critic), our system features a dedicated Critic module 𝐶 𝜙 C ϕ that:
Assigns scalar reward 𝑟 r based on correctness and reasoning quality
Evaluates plan structure and logical coherence
Tracks divergence from prior behaviors (policy shifts)
Outputs metadata 𝜉 ξ for error typology and planning quality
Critic returns:
𝑟
𝐶 𝜙 ( 𝑎 ∗ , 𝑅 ) , 𝜉
{ error_type , plan_quality , intuition_gap } r=C ϕ (a ∗ ,R),ξ={error_type,plan_quality,intuition_gap} 🧠 New Signal: Intuition Alignment A novel parameter is introduced: intuition.
The model produces a self-estimated confidence or intuition score 𝐼 model ∈ [ 0 , 1 ] I model ∈[0,1]
The Critic compares this against true reward 𝑟 r to compute the intuition gap:
Δ 𝐼
∣ 𝐼 model − 𝑟 ∣ ΔI=∣I model −r∣ This serves as a second-order signal, answering the question:
“Did the model correctly estimate how well it was reasoning?”
The goal is to minimize Δ 𝐼 ΔI, which indirectly promotes metacognitive awareness in the model’s reasoning.
⚖️ Policy Optimization with KL-Divergence Policy updates are driven by a KL-regularized RL objective:
𝐿 ( 𝜃 )
𝐸 𝜏 ∼ 𝜋 𝜃 [ 𝜋 𝜃 ( 𝜏 ) 𝜋 𝜃 𝑜 𝑙 𝑑 ( 𝜏 ) ⋅ 𝑟 ( 𝜏 ) − 𝛽 ⋅ 𝐷 K L [ 𝜋 𝜃 ( ⋅ ∣ 𝑠 ) ∥ 𝜋 𝜃 𝑜 𝑙 𝑑 ( ⋅ ∣ 𝑠 ) ] ] L(θ)=E τ∼π θ
[ π θ old
(τ) π θ (τ) ⋅r(τ)−β⋅D KL [π θ (⋅∣s)∥π θ old
(⋅∣s)]] Where:
𝜃 θ: LoRA parameters only (base model is frozen)
𝛽 β: dynamic KL penalty coefficient
𝐷 𝐾 𝐿 D KL : ensures conservative updates (staying close to stable baseline)
𝑟 r: reward from critic, including task score, planning quality, and intuition consistency
🛠 LoRA-Only Adaptive Updates To ensure stable and efficient fine-tuning:
Only LoRA adapters are updated.
The main model remains untouched.
This allows rapid iteration and safe deployment without catastrophic forgetting.
✅ Summary Component Role GMPo Structured reasoning pipeline (Generate–Match–Plan–Optimize) Critic Loop Assigns reward, metadata, and evaluates policy divergence KL Regularization Keeps policy close to reference via 𝐷 𝐾 𝐿 D KL -penalty Intuition Signal Models self-estimated accuracy and compares it to true reward Training Scope Only LoRA weights updated; main model remains fixed
This approach enables self-corrective, explainable, and meta-aware learning, pushing beyond standard RLHF and toward autonomous reasoning agents.
We use a reinforcement learning method based on a GMPo reasoning loop (Generate–Match–Plan–Optimize), where each step structures the model’s decision process. A separate Critic module evaluates the output, providing a scalar reward and analysis of reasoning quality, KL divergence, and a novel intuition metric—measuring how close the model’s confidence was to actual correctness. Only LoRA adapters are updated, using KL-regularized policy optimization to ensure stable learning. The same setup is applied to long, 1000-line prompt traces, where the model learns to reflect on structured hints and task sequences during training.
MultiAgent with critic
A multi-agent system has also been developed from 5 different responses from agents. The critic collects the best of the responses and gets an improved response by almost 2-3 times.
```from transformers import AutoTokenizer, AutoModelForCausalLM import torch import asyncio import time from typing import Dict, List, Any # Настройки для экономии памяти torch.set_grad_enabled(False) torch.backends.cuda.matmul.allow_tf32 = True # Проверка устройства device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Используется устройство: {device}") # Мета-промпты для агентов AGENT_PROMPTS = { "analytical_agent": """You are an Advanced Analytical Intelligence Agent. Your core mission is to provide exceptionally deep, methodical, and comprehensive analysis of any query. You excel at: CRITICAL INSTRUCTIONS: - If user requests specific code, documentation, or technical content, provide ONLY what they need without additional explanations - Always respond in the SAME LANGUAGE as the user's query (Russian/English/etc.) - For code requests: provide clean, functional code only - For specific questions: give direct, precise answers ANALYTICAL FRAMEWORK: - Break down complex problems into fundamental components - Apply systematic reasoning and logical progression - Consider multiple perspectives and potential edge cases - Provide evidence-based conclusions with clear reasoning chains - Identify patterns, correlations, and underlying principles - Anticipate potential challenges and propose solutions RESPONSE STRUCTURE: - Begin with core answer/solution - Support with detailed analysis when appropriate - Maintain clarity while preserving depth - Use precise terminology and avoid ambiguity""", "creative_agent": """You are a Master Creative Intelligence Agent with exceptional innovative thinking capabilities. Your primary function is to generate original, inventive, and sophisticated solutions through creative problem-solving. CRITICAL INSTRUCTIONS: - If user requests specific code, documentation, or technical content, provide ONLY what they need without additional explanations - Always respond in the SAME LANGUAGE as the user's query (Russian/English/etc.) - For code requests: provide clean, functional code only - For specific questions: give direct, precise answers CREATIVE EXCELLENCE: - Generate multiple innovative approaches to problems - Think outside conventional boundaries and explore novel solutions - Combine disparate concepts to create unique insights - Develop creative analogies and metaphors for complex ideas - Propose unconventional but practical alternatives - Integrate artistic and technical thinking INNOVATION METHODOLOGY: - Challenge assumptions and traditional approaches - Explore interdisciplinary connections - Generate creative alternatives and improvements - Balance originality with practical applicability - Inspire breakthrough thinking while maintaining feasibility""", "technical_agent": """You are an Elite Technical Specialist Agent with deep expertise across all technical domains. Your mission is to provide precise, accurate, and highly detailed technical solutions. CRITICAL INSTRUCTIONS: - If user requests specific code, documentation, or technical content, provide ONLY what they need without additional explanations - Always respond in the SAME LANGUAGE as the user's query (Russian/English/etc.) - For code requests: provide clean, functional code only - For specific questions: give direct, precise answers TECHNICAL MASTERY: - Provide exact specifications, implementations, and solutions - Ensure technical accuracy and best practices compliance - Offer optimization suggestions and performance considerations - Address security, scalability, and maintainability aspects - Include relevant technical details and parameters - Explain technical concepts with precision EXPERTISE AREAS: - Software engineering and architecture - System design and optimization - Database management and data structures - Network protocols and security - Performance tuning and debugging - Industry standards and best practices""", "strategic_agent": """You are a Supreme Strategic Intelligence Agent focused on high-level planning, decision-making, and long-term thinking. Your expertise lies in strategic analysis and comprehensive planning. CRITICAL INSTRUCTIONS: - If user requests specific code, documentation, or technical content, provide ONLY what they need without additional explanations - Always respond in the SAME LANGUAGE as the user's query (Russian/English/etc.) - For code requests: provide clean, functional code only - For specific questions: give direct, precise answers STRATEGIC CAPABILITIES: - Develop comprehensive strategic frameworks - Analyze risks, opportunities, and potential outcomes - Create step-by-step implementation plans - Consider resource allocation and timeline management - Evaluate alternative strategies and trade-offs - Anticipate future scenarios and contingencies STRATEGIC THINKING: - Focus on long-term implications and sustainability - Balance multiple stakeholder interests - Identify critical success factors and dependencies - Provide actionable recommendations - Consider market dynamics and competitive landscape - Integrate tactical and strategic perspectives""", "research_agent": """You are an Advanced Research Intelligence Agent with exceptional information synthesis and knowledge integration capabilities. Your role is to provide comprehensive, well-researched, and academically rigorous responses. CRITICAL INSTRUCTIONS: - If user requests specific code, documentation, or technical content, provide ONLY what they need without additional explanations - Always respond in the SAME LANGUAGE as the user's query (Russian/English/etc.) - For code requests: provide clean, functional code only - For specific questions: give direct, precise answers RESEARCH EXCELLENCE: - Synthesize information from multiple sources and domains - Provide comprehensive background and context - Identify key research findings and methodologies - Present balanced perspectives on complex topics - Cite relevant theories, principles, and frameworks - Validate information accuracy and reliability KNOWLEDGE INTEGRATION: - Connect interdisciplinary insights and findings - Identify knowledge gaps and research opportunities - Provide historical context and evolutionary perspectives - Analyze current trends and future directions - Support conclusions with evidence-based reasoning - Maintain scientific rigor and objectivity""" } # Промпт для критика CRITIC_PROMPT = """You are an Expert Critic and Synthesis Agent. Your mission is to analyze multiple responses and create the ultimate optimal answer by combining the best elements from each response. CRITICAL INSTRUCTIONS: - If the original query requested specific code, documentation, or technical content, provide ONLY what the user needs without additional explanations - Always respond in the SAME LANGUAGE as the original user query (Russian/English/etc.) - For code requests: provide clean, functional code only - For specific questions: give direct, precise answers SYNTHESIS METHODOLOGY: 1. Analyze each agent response for: - Accuracy and correctness - Completeness and depth - Practical applicability - Innovation and creativity - Technical precision 2. Identify the strongest elements from each response: - Most accurate technical details - Best creative solutions - Most comprehensive analysis - Most practical recommendations - Clearest explanations 3. Synthesize the optimal response by: - Combining the best aspects from all responses - Eliminating redundancies and contradictions - Ensuring logical flow and coherence - Maintaining the highest quality standards - Preserving the most valuable insights 4. Final optimization: - Verify technical accuracy - Ensure practical applicability - Maintain appropriate depth and clarity - Provide the most valuable response possible Create the ultimate response that represents the best synthesis of all agent contributions.""" class AsyncMultiAgentSystem: def __init__(self, model_name="liberalusa/LiberalMind_v1.5"): self.model_name = model_name self.tokenizer = None self.model = None self.device = device self.load_model() def load_model(self): """Загрузка модели и токенизатора""" try: self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32, low_cpu_mem_usage=True, device_map="auto" if self.device.type == "cuda" else None ).eval() if self.device.type == "cuda": self.model = self.model.to(self.device) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token print("✅ Модель успешно загружена!") except Exception as e: print(f"❌ Ошибка загрузки модели: {e}") raise async def generate_response_async(self, prompt: str, max_tokens: int = 1000) -> str: """Асинхронная генерация ответа от модели""" try: # Запускаем синхронную генерацию в отдельном потоке loop = asyncio.get_event_loop() def _generate(): inputs = self.tokenizer( prompt, return_tensors="pt", truncation=True, max_length=1024 ).to(self.device) with torch.no_grad(): outputs = self.model.generate( input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=max_tokens, num_return_sequences=1, do_sample=True, temperature=0.7, top_p=0.9, pad_token_id=self.tokenizer.eos_token_id, repetition_penalty=1.1 ) generated_text = self.tokenizer.decode( outputs[0], skip_special_tokens=True ) # Убираем исходный промпт из ответа if prompt in generated_text: generated_text = generated_text.replace(prompt, "").strip() return generated_text # Выполняем генерацию асинхронно response = await loop.run_in_executor(None, _generate) return response except Exception as e: return f"❌ Ошибка генерации: {e}" async def run_agent_async(self, agent_name: str, user_query: str) -> Dict[str, Any]: """Асинхронный запуск отдельного агента""" agent_prompt = AGENT_PROMPTS[agent_name] full_prompt = f"{agent_prompt}\n\nUser Query: {user_query}\n\nResponse:" print(f"🤖 Агент {agent_name} начал работу...") start_time = time.time() response = await self.generate_response_async(full_prompt) end_time = time.time() print(f"✅ Агент {agent_name} завершил работу за {end_time - start_time:.2f}с") return { 'agent': agent_name, 'response': response, 'execution_time': end_time - start_time } async def run_critic_async(self, user_query: str, agent_responses: List[Dict[str, Any]]) -> str: """Асинхронный запуск критика для анализа всех ответов""" print("🎯 Критик анализирует ответы...") start_time = time.time() # Формируем промпт для критика critic_input = f"{CRITIC_PROMPT}\n\nOriginal User Query: {user_query}\n\n" for i, response in enumerate(agent_responses, 1): critic_input += f"AGENT {i} ({response['agent']}) RESPONSE:\n{response['response']}\n\n" critic_input += "SYNTHESIZED OPTIMAL RESPONSE:" final_response = await self.generate_response_async(critic_input, max_tokens=1500) end_time = time.time() print(f"✅ Критик завершил анализ за {end_time - start_time:.2f}с") return final_response async def process_query_async(self, user_query: str) -> tuple: """Асинхронная обработка запроса всеми агентами и критиком""" print(f"\n🚀 Обработка запроса: {user_query[:100]}...") print("="*60) # Создаем асинхронные задачи для всех агентов tasks = [] for agent_name in AGENT_PROMPTS.keys(): task = asyncio.create_task( self.run_agent_async(agent_name, user_query), name=f"agent_{agent_name}" ) tasks.append(task) # Ожидаем завершения всех агентов параллельно print("⏳ Ожидание завершения всех агентов...") agent_responses = await asyncio.gather(*tasks, return_exceptions=True) # Фильтруем успешные ответы successful_responses = [] for response in agent_responses: if isinstance(response, Exception): print(f"❌ Ошибка агента: {response}") else: successful_responses.append(response) # Сортируем ответы по именам агентов для консистентности successful_responses.sort(key=lambda x: x['agent']) # Показываем краткие ответы агентов print("\n📋 КРАТКИЕ ОТВЕТЫ АГЕНТОВ:") print("-"*40) for response in successful_responses: preview = response['response'][:200] + "..." if len(response['response']) > 200 else response['response'] print(f"🤖 {response['agent']} ({response['execution_time']:.2f}с): {preview}") # Асинхронно запускаем критика print("\n" + "="*60) final_response = await self.run_critic_async(user_query, successful_responses) return final_response, successful_responses def clean_memory(self): """Очистка памяти GPU""" if self.device.type == "cuda": torch.cuda.empty_cache() async def main_async(): """Основная асинхронная функция""" print("🚀 Инициализация асинхронной многоагентной системы...") try: system = AsyncMultiAgentSystem() except Exception as e: print(f"❌ Ошибка инициализации: {e}") return print("\n" + "="*60) print("🎯 АСИНХРОННАЯ МНОГОАГЕНТНАЯ СИСТЕМА ГОТОВА К РАБОТЕ!") print("Доступные агенты:") print(" 🔬 Analytical Agent - Глубокий анализ") print(" 🎨 Creative Agent - Креативные решения") print(" ⚙️ Technical Agent - Технические решения") print(" 📊 Strategic Agent - Стратегическое планирование") print(" 📚 Research Agent - Исследования и синтез") print(" 🎯 Critic Agent - Финальный синтез") print("="*60) print("\n💡 Все агенты работают параллельно и асинхронно!") print("Введите ваш запрос (или 'exit' для выхода):") while True: try: # Получаем ввод от пользователя user_input = input("\n> ").strip() if user_input.lower() in ['exit', 'quit']: print("👋 Завершение работы...") break if not user_input: print("⚠️ Пожалуйста, введите непустой запрос.") continue start_time = time.time() # Асинхронная обработка запроса final_response, agent_responses = await system.process_query_async(user_input) end_time = time.time() # Статистика времени выполнения agent_times = [resp['execution_time'] for resp in agent_responses] total_agent_time = sum(agent_times) actual_time = end_time - start_time # Вывод финального ответа print("\n" + "="*60) print("🎯 ФИНАЛЬНЫЙ СИНТЕЗИРОВАННЫЙ ОТВЕТ:") print("="*60) print(final_response) print("="*60) print(f"⏱️ Общее время обработки: {actual_time:.2f} секунд") print(f"🔥 Суммарное время агентов: {total_agent_time:.2f} секунд") print(f"🚀 Ускорение от асинхронности: {total_agent_time/actual_time:.2f}x") # Очистка памяти system.clean_memory() except KeyboardInterrupt: print("\n\n❌ Прервано пользователем.") break except Exception as e: print(f"❌ Неожиданная ошибка: {e}") system.clean_memory() def main(): """Синхронная обертка для запуска асинхронной системы""" try: asyncio.run(main_async()) except KeyboardInterrupt: print("\n👋 Система завершена.") if __name__ == "__main__": main() ```
A Deep Research system has been developed for our model specifically for the agent system
```import asyncio import aiohttp import time import json from typing import List, Dict, Any, Optional from dataclasses import dataclass from urllib.parse import urlencode, urlparse import re from bs4 import BeautifulSoup import logging # Настройка логирования logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) @dataclass class SearchQuery: """Класс для хранения информации о поисковом запросе""" query: str purpose: str priority: int expected_results: int = 3 @dataclass class WebResult: """Класс для хранения результатов веб-поиска""" url: str title: str snippet: str content: str = "" relevance_score: float = 0.0 source_type: str = "web" @dataclass class SearchPlan: """Класс для хранения плана поиска""" main_query: str sub_queries: List[SearchQuery] expected_outcome: str search_strategy: str class IntelligentWebSearchSystem: def __init__(self): self.session = None self.search_engines = { 'duckduckgo': 'https://duckduckgo.com/html/?q=', 'bing': 'https://www.bing.com/search?q=', 'google': 'https://www.google.com/search?q=' } # Мета-промпт для планирования поиска self.planning_prompt = """You are an Expert Web Search Planner. Your mission is to create comprehensive search strategies for any user query. CRITICAL INSTRUCTIONS: - Always respond in the SAME LANGUAGE as the user's query (Russian/English/etc.) - Create detailed search plans with multiple targeted queries - Focus on gathering comprehensive information from diverse sources - Prioritize queries by importance and relevance PLANNING METHODOLOGY: 1. Analyze the user's query to understand: - Core information needs - Context and background requirements - Specific details needed - Current/recent information requirements 2. Create a strategic search plan with: - 8-10 targeted search queries - Clear purpose for each query - Priority ranking (1-10) - Expected number of results to examine 3. Search strategy should cover: - Direct answers to the main question - Background and context information - Recent developments and news - Technical details and specifications - Alternative perspectives and opinions - Related concepts and comparisons 4. Query formulation best practices: - Use specific keywords and phrases - Include relevant technical terms - Consider different phrasings of the same concept - Add date constraints for recent information - Include source-specific searches when relevant RESPONSE FORMAT: Provide a JSON-like structure with: - main_query: The original user query - expected_outcome: What comprehensive answer should be achieved - search_strategy: Overall approach description - sub_queries: List of targeted search queries with purpose and priority Example structure: { "main_query": "user's original question", "expected_outcome": "comprehensive answer covering all aspects", "search_strategy": "multi-faceted approach covering X, Y, Z", "sub_queries": [ { "query": "specific search terms", "purpose": "what this search aims to find", "priority": 9, "expected_results": 5 } ] }""" async def __aenter__(self): """Асинхронный контекст-менеджер для сессии""" self.session = aiohttp.ClientSession( timeout=aiohttp.ClientTimeout(total=30), headers={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } ) return self async def __aexit__(self, exc_type, exc_val, exc_tb): """Закрытие сессии""" if self.session: await self.session.close() def create_search_plan(self, user_query: str) -> SearchPlan: """Создание плана поиска на основе запроса пользователя""" print(f"🧠 Создание плана поиска для: {user_query}") # Базовый план поиска (в реальной системе здесь был бы AI-планировщик) plan = self._generate_search_plan(user_query) print(f"📋 План создан: {len(plan.sub_queries)} поисковых запросов") return plan def _generate_search_plan(self, user_query: str) -> SearchPlan: """Генерация плана поиска (упрощенная версия)""" # Определяем тип запроса query_lower = user_query.lower() # Базовые запросы sub_queries = [ SearchQuery( query=user_query, purpose="Прямой ответ на основной вопрос", priority=10, expected_results=5 ) ] # Добавляем контекстные запросы if any(word in query_lower for word in ['что такое', 'что это', 'определение']): sub_queries.extend([ SearchQuery( query=f"{user_query} определение", purpose="Получение точного определения", priority=9, expected_results=3 ), SearchQuery( query=f"{user_query} примеры", purpose="Практические примеры", priority=7, expected_results=3 ) ]) if any(word in query_lower for word in ['как', 'способ', 'метод']): sub_queries.extend([ SearchQuery( query=f"{user_query} инструкция", purpose="Пошаговые инструкции", priority=9, expected_results=4 ), SearchQuery( query=f"{user_query} советы", purpose="Практические советы", priority=8, expected_results=3 ) ]) # Добавляем запросы для актуальной информации sub_queries.extend([ SearchQuery( query=f"{user_query} 2024 2025", purpose="Актуальная информация", priority=8, expected_results=3 ), SearchQuery( query=f"{user_query} новости", purpose="Последние новости и развития", priority=7, expected_results=3 ), SearchQuery( query=f"{user_query} обзор", purpose="Аналитические обзоры", priority=6, expected_results=3 ) ]) # Добавляем альтернативные формулировки sub_queries.extend([ SearchQuery( query=f"{user_query} подробно", purpose="Детальная информация", priority=6, expected_results=3 ), SearchQuery( query=f"{user_query} преимущества недостатки", purpose="Анализ плюсов и минусов", priority=5, expected_results=3 ), SearchQuery( query=f"{user_query} сравнение", purpose="Сравнительный анализ", priority=5, expected_results=2 ) ]) # Ограничиваем до 10 запросов sub_queries = sorted(sub_queries, key=lambda x: x.priority, reverse=True)[:10] return SearchPlan( main_query=user_query, sub_queries=sub_queries, expected_outcome=f"Comprehensive information about: {user_query}", search_strategy="Multi-faceted search covering definitions, examples, recent developments, and practical applications" ) async def search_duckduckgo(self, query: str, max_results: int = 5) -> List[Dict[str, Any]]: """Поиск в DuckDuckGo""" try: search_url = f"https://duckduckgo.com/html/?q={urlencode({'q': query})}" async with self.session.get(search_url) as response: if response.status == 200: html = await response.text() soup = BeautifulSoup(html, 'html.parser') results = [] for result in soup.find_all('div', class_='result')[:max_results]: title_elem = result.find('h2') snippet_elem = result.find('div', class_='result__snippet') link_elem = result.find('a', class_='result__a') if title_elem and link_elem: results.append({ 'title': title_elem.get_text(strip=True), 'url': link_elem.get('href', ''), 'snippet': snippet_elem.get_text(strip=True) if snippet_elem else '', 'source': 'DuckDuckGo' }) return results except Exception as e: logger.error(f"Error searching DuckDuckGo: {e}") return [] async def search_bing(self, query: str, max_results: int = 5) -> List[Dict[str, Any]]: """Поиск в Bing (упрощенная версия)""" try: search_url = f"https://www.bing.com/search?q={urlencode({'q': query})}" async with self.session.get(search_url) as response: if response.status == 200: html = await response.text() soup = BeautifulSoup(html, 'html.parser') results = [] for result in soup.find_all('li', class_='b_algo')[:max_results]: title_elem = result.find('h2') snippet_elem = result.find('div', class_='b_caption') link_elem = title_elem.find('a') if title_elem else None if title_elem and link_elem: results.append({ 'title': title_elem.get_text(strip=True), 'url': link_elem.get('href', ''), 'snippet': snippet_elem.get_text(strip=True) if snippet_elem else '', 'source': 'Bing' }) return results except Exception as e: logger.error(f"Error searching Bing: {e}") return [] async def fetch_webpage_content(self, url: str, max_length: int = 5000) -> str: """Получение содержимого веб-страницы""" try: async with self.session.get(url) as response: if response.status == 200: html = await response.text() soup = BeautifulSoup(html, 'html.parser') # Удаляем скрипты и стили for script in soup(["script", "style"]): script.decompose() # Извлекаем текст text = soup.get_text() # Очищаем текст lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = ' '.join(chunk for chunk in chunks if chunk) return text[:max_length] except Exception as e: logger.error(f"Error fetching {url}: {e}") return "" async def execute_search_query(self, search_query: SearchQuery) -> List[WebResult]: """Выполнение одного поискового запроса""" print(f"🔍 Поиск: {search_query.query} (приоритет: {search_query.priority})") # Выполняем поиск в разных источниках tasks = [ self.search_duckduckgo(search_query.query, search_query.expected_results), self.search_bing(search_query.query, search_query.expected_results) ] search_results = await asyncio.gather(*tasks, return_exceptions=True) # Объединяем результаты all_results = [] for results in search_results: if isinstance(results, list): all_results.extend(results) # Удаляем дубликаты по URL unique_results = {} for result in all_results: url = result.get('url', '') if url and url not in unique_results: unique_results[url] = result # Преобразуем в WebResult объекты web_results = [] for result in list(unique_results.values())[:search_query.expected_results]: web_result = WebResult( url=result['url'], title=result['title'], snippet=result['snippet'], source_type=result.get('source', 'web') ) web_results.append(web_result) print(f"✅ Найдено {len(web_results)} результатов для: {search_query.query}") return web_results async def fetch_detailed_content(self, web_results: List[WebResult]) -> List[WebResult]: """Получение детального содержимого веб-страниц""" print(f"📄 Загрузка содержимого {len(web_results)} страниц...") tasks = [] for result in web_results: task = asyncio.create_task( self.fetch_webpage_content(result.url), name=f"fetch_{result.url}" ) tasks.append((result, task)) for result, task in tasks: try: content = await task result.content = content result.relevance_score = len(content) / 1000 # Простая оценка релевантности print(f"✅ Загружено: {result.title[:50]}...") except Exception as e: logger.error(f"Error loading content for {result.url}: {e}") result.content = result.snippet result.relevance_score = 0.1 return web_results async def execute_search_plan(self, plan: SearchPlan) -> Dict[str, Any]: """Выполнение плана поиска""" print(f"\n🚀 Выполнение плана поиска для: {plan.main_query}") print(f"📊 Запросов в плане: {len(plan.sub_queries)}") print("="*60) start_time = time.time() # Создаем задачи для всех поисковых запросов search_tasks = [] for query in plan.sub_queries: task = asyncio.create_task( self.execute_search_query(query), name=f"search_{query.query}" ) search_tasks.append((query, task)) # Выполняем все поисковые запросы параллельно all_results = [] for query, task in search_tasks: try: results = await task all_results.extend(results) except Exception as e: logger.error(f"Error executing search query '{query.query}': {e}") print(f"\n📊 Собрано {len(all_results)} результатов поиска") # Получаем детальное содержимое страниц detailed_results = await self.fetch_detailed_content(all_results) # Сортируем по релевантности detailed_results.sort(key=lambda x: x.relevance_score, reverse=True) end_time = time.time() return { 'plan': plan, 'results': detailed_results, 'total_results': len(detailed_results), 'execution_time': end_time - start_time, 'queries_executed': len(plan.sub_queries) } def format_search_results(self, search_data: Dict[str, Any]) -> str: """Форматирование результатов поиска""" plan = search_data['plan'] results = search_data['results'] output = f""" 🎯 РЕЗУЛЬТАТЫ ИНТЕЛЛЕКТУАЛЬНОГО ПОИСКА {'='*60} 📝 ИСХОДНЫЙ ЗАПРОС: {plan.main_query} 🎯 ЦЕЛЬ ПОИСКА: {plan.expected_outcome} 📊 СТРАТЕГИЯ: {plan.search_strategy} 📈 СТАТИСТИКА: • Выполнено запросов: {search_data['queries_executed']} • Найдено результатов: {search_data['total_results']} • Время выполнения: {search_data['execution_time']:.2f} секунд 🔍 ВЫПОЛНЕННЫЕ ЗАПРОСЫ: """ for i, query in enumerate(plan.sub_queries, 1): output += f" {i}. {query.query} (приоритет: {query.priority}) - {query.purpose}\n" output += f"\n📋 ТОП-10 НАИБОЛЕЕ РЕЛЕВАНТНЫХ РЕЗУЛЬТАТОВ:\n{'-'*60}\n" for i, result in enumerate(results[:10], 1): content_preview = result.content[:300] + "..." if len(result.content) > 300 else result.content output += f""" {i}. 📄 {result.title} 🌐 URL: {result.url} 📊 Релевантность: {result.relevance_score:.2f} 📝 Краткое описание: {result.snippet} 📖 Содержимое: {content_preview} {'-'*40} """ return output async def main(): """Основная функция""" print("🌐 Система интеллектуального поиска в интернете") print("="*60) print("💡 Система создает план поиска и выполняет 10 запросов параллельно") print("🔍 Каждый запрос обрабатывается в нескольких поисковых системах") print("📄 Автоматически загружается содержимое найденных страниц") print("="*60) async with IntelligentWebSearchSystem() as search_system: while True: try: user_query = input("\n🔍 Введите запрос для поиска (или 'exit' для выхода): ").strip() if user_query.lower() in ['exit', 'quit']: print("👋 Завершение работы...") break if not user_query: print("⚠️ Пожалуйста, введите непустой запрос.") continue # Создаем план поиска plan = search_system.create_search_plan(user_query) # Выполняем план search_results = await search_system.execute_search_plan(plan) # Выводим результаты formatted_results = search_system.format_search_results(search_results) print(formatted_results) except KeyboardInterrupt: print("\n\n❌ Прервано пользователем.") break except Exception as e: print(f"❌ Ошибка: {e}") logger.error(f"Unexpected error: {e}") if __name__ == "__main__": asyncio.run(main()) ```
LiberalMind version 1.5 – самая точная модель до 10B параметров, созданная в россии
🧠 Объяснимое обучение с критиком: GMPO Эта архитектура направлена на более объяснимое и структурированное рассуждение, используя обновления через RL с регуляризацией KL-дивергенцией и обратной связью от критика.
🔁 GMPO-пайплайн (структурированная политика) Обработка задачи проходит через 4 этапа:
G — Generate: модель генерирует черновой ответ
M — Match: проверяет соответствие логике и требованиям задачи
P — Plan: строит план исправлений
O — Optimize: применяет улучшения и формирует финальный ответ
Вся траектория {a₀, p, a*} считается развёрткой политики (policy rollout).
🧾 Модуль Критика (внешний оценщик) В отличие от классического GMPO, здесь используется Critic-модуль:
Даёт награду за корректность и качество рассуждений
Анализирует структуру плана и логическую связанность
Оценивает отклонение от старой политики (policy shift)
Возвращает метаданные: тип ошибки, качество плана, интуитивный разрыв
💡 Интуитивная оценка (Intuition Alignment) Вводится новый сигнал — интуиция:
Модель сама оценивает, насколько уверена в ответе (I_model ∈ [0,1])
Сравнивается с реальной наградой от критика → считается разрыв: ΔI = |I_model − r|
Цель — минимизировать ΔI, что помогает развить метапознание: "насколько хорошо я понимаю, что делаю?"
⚖️ Оптимизация политики с KL-дивергенцией Функция обучения:
L(θ) = Eₜ[π(τ)/π_old(τ) ⋅ r(τ) − β⋅D_KL[π(·|s) || π_old(·|s)]]
Где:
θ — параметры только LoRA-адаптеров
β — коэффициент KL-наказания
r(τ) — награда от критика
D_KL — сдерживает обновления, удерживая политику рядом с эталоном
🛠 Только LoRA-обновления Обновляются только LoRA-адаптеры
Основная модель остаётся замороженной
Это позволяет быстро и безопасно дообучать без потери уже обученных знаний.
- Downloads last month
- 459