Aero-1-Audio / README.md
kcz358's picture
Create README.md
ab2f482 verified
|
raw
history blame
6.96 kB
metadata
license: mit
language:
  - en
base_model:
  - Qwen/Qwen2.5-1.5B-Instruct
library_name: transformers

Model Card for Model ID

This modelcard aims to be a base template for new models. It has been generated using this raw template.

Model Details

Model Description

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

You are encouraged to install transformers by using

python3 -m pip install transformers@git+https://github.com/huggingface/[email protected]

as this is the transformers version we are using when building this model.

from transformers import AutoProcessor, AutoModelForCausalLM

import torch
import librosa

def load_audio():
    return librosa.load(librosa.ex("libri1"), sr=16000)[0]


processor = AutoProcessor.from_pretrained("lmms-lab/Aero-1-Audio-1.5B", trust_remote_code=True)
# We encourage to use flash attention 2 for better performance
# Please install it with `pip install --no-build-isolation flash-attn`
# If you do not want flash attn, please use sdpa or eager`
model = AutoModelForCausalLM.from_pretrained("lmms-lab/Aero-1-Audio-1.5B", device_map="cuda", torch_dtype="auto", attn_implementation="flash_attention_2", trust_remote_code=True)
model.eval()

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "audio_url",
                "audio": "placeholder",
            },
            {
                "type": "text",
                "text": "Please transcribe the audio",
            }
        ]
    }
]

audios = [load_audio()]

prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, audios=audios, sampling_rate=16000, return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
outputs = model.generate(**inputs, eos_token_id=151645, max_new_tokens=4096)

cont = outputs[:, inputs["input_ids"].shape[-1] :]

print(processor.batch_decode(cont, skip_special_tokens=True)[0])

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]