EAGLE 3
Collection
Train Eagle 3 for SGLang with SpecForge
•
2 items
•
Updated
•
1
The Eagle3 draft model was trained using the SpecForge framework for the Llama4 Scout 17B-16E Instruct model, leveraging a combination of UltraChat and ShareGPT datasets. Under a 3-1-4 speculative decoding configuration—3 speculative steps, top-1 token selection, and 4 draft tokens—it achieves an acceptance length of 2.27.
You can use this Eagle3 draft model in SGLang with the following command:
python3 -m sglang.launch_server \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct \
--speculative-algorithm EAGLE3 \
--speculative-draft-model-path lmsys/sglang-EAGLE3-Llama-4-Scout-17B-16E-Instruct-v1 \
--speculative-num-steps 3 \
--speculative-eagle-topk 1 \
--speculative-num-draft-tokens 4 \
--mem-fraction-static 0.75 \
--cuda-graph-max-bs 2 \
--tp 8 \
--context-length 8192 \
--trust-remote-code \
--host 0.0.0.0 \
--port 30000 \
--dtype bfloat16